1+ 2+ 3........99+100 =
Answers
Answered by
15
Hey mate ^_^
========
Solution:
========
It is an AP where a = 1, d = 1 and n = 100.
The sum is S100 =(n/2)[2a + (n-1)d]
= (100/2)[2*1 + (100–1)*1]
= 50 [2+99]
= 50*101
= 5050
=============
Answer: 5050
=============
#Be Brainly❤️
========
Solution:
========
It is an AP where a = 1, d = 1 and n = 100.
The sum is S100 =(n/2)[2a + (n-1)d]
= (100/2)[2*1 + (100–1)*1]
= 50 [2+99]
= 50*101
= 5050
=============
Answer: 5050
=============
#Be Brainly❤️
TheLostMonk:
klol ... haha.
Answered by
0
Sum of first 100 terms(S)=1+2+3+…+98+99+100—(eq. i)
Similarly,
S=100+99+98+…+3+2+1—(eq. ii)
Adding (eq. i) and (eq. ii), he got,
S=1+2+3+…+98+99+100
+
S=100+99+98+…+3+2+1
(S+S)=(1+100)+(2+99)+(3+98)+…+(98+3)+(99+2)+(100+1)
∴2(S)=101+101+101+…+101+101+101(ie 101x100)
2(S)=101x100
∴S=101x100/2
∴S=101x50
∴S=5050.
Similarly,
S=100+99+98+…+3+2+1—(eq. ii)
Adding (eq. i) and (eq. ii), he got,
S=1+2+3+…+98+99+100
+
S=100+99+98+…+3+2+1
(S+S)=(1+100)+(2+99)+(3+98)+…+(98+3)+(99+2)+(100+1)
∴2(S)=101+101+101+…+101+101+101(ie 101x100)
2(S)=101x100
∴S=101x100/2
∴S=101x50
∴S=5050.
Similar questions