Physics, asked by duragpalsingh, 1 month ago

1.22. The velocity of a particle moving in the positive direction
of the x axis varies as v = al/x, where a is a positive constant.
Assuming that at the moment t = 0 the particle was located at the
point x = 0, find:
(a) the time dependence of the velocity and the acceleration of the
particle;
(b) the mean velocity of the particle averaged over the time that
the particle takes to cover the first s metres of the path.

Answers

Answered by Anonymous
54

Topic :- Motion in straight line

\maltese\:\underline{\sf AnsWer :}\:\maltese

Given that, the velocity of a particle moving in the positive direction of the x axis varies as :-

\longrightarrow\:\:\sf v = a \sqrt{x}  \\

Velocity can be calculated by the given below formula :

\longrightarrow\:\:\sf v = \dfrac{dx}{dt} \\

\longrightarrow\:\:\sf a \sqrt{x} = \dfrac{dx}{dt} \\

\longrightarrow\:\:\sf a.dt= \dfrac{dx}{ \sqrt{x} } \\

By integrating both the sides we get :

\longrightarrow \:  \: \displaystyle \sf \int\limits_{0}^{t} a\, dt=\int\limits_{0}^{x} \dfrac{dx}{ \sqrt{x} }  \\

\longrightarrow \:  \: \displaystyle \sf a\int\limits_{0}^{t} dt=\int\limits_{0}^{x} \dfrac{dx}{ {x}^{ \frac{1}{2} } }  \\

\longrightarrow \:  \: \displaystyle \sf a\int\limits_{0}^{t} dt=\int\limits_{0}^{x} {x}^{  - \frac{1}{2}} \: dx  \\

\longrightarrow \:  \: \displaystyle \sf at=\int\limits_{0}^{x} {x}^{  - \frac{1}{2}} \: dx  \\

\longrightarrow \:  \: \displaystyle \sf at=\int\limits_{0}^{x} \dfrac{ {x}^{  - \frac{1}{2} + 1}}{ \dfrac{ - 1}{2} + 1 }  \\

\longrightarrow \:  \: \displaystyle \sf at=\int\limits_{0}^{x} \dfrac{ {x}^{  - \frac{1 + 2}{2}}}{ \dfrac{ - 1 + 2}{2} }  \\

\longrightarrow \:  \: \displaystyle \sf at=\int\limits_{0}^{x} \dfrac{ {x}^{ \frac{1}{2}}}{ \dfrac{ 1}{2} }  \\

\longrightarrow \:  \: \displaystyle \sf at=\int\limits_{0}^{x} 2{x}^{ \frac{1}{2}} \\

\longrightarrow \:  \: \displaystyle \sf at=\Bigg[2{x}^{ \frac{1}{2}} \Bigg]^{x}_{0}\\

\longrightarrow \:  \: \displaystyle \sf at=\Bigg[2{x}^{ \frac{1}{2}} - 2{(0)}^{ \frac{1}{2}} \Bigg]\\

\longrightarrow \:  \: \displaystyle \sf at=\Bigg[2{x}^{ \frac{1}{2}} - 0\Bigg]\\

\longrightarrow \:  \: \displaystyle \sf at = 2{x}^{ \frac{1}{2}}\\

\longrightarrow \:  \: \displaystyle \sf at = 2 \sqrt{x} \\

\longrightarrow \:  \: \displaystyle \sf  \sqrt{x}  =  \dfrac{at}{2} \\

Squaring both the sides we get :

\longrightarrow \:  \: \displaystyle \sf  x  =  \dfrac{ {a}^{2} {t}^{2}  }{4} \\

The time dependence of the velocity and the acceleration of the particle :-

\longrightarrow\:\:\sf v = \dfrac{dx}{dt} \\

\longrightarrow\:\:\sf v = \dfrac{d}{dt} \bigg( \dfrac{ {a}^{2}  {t}^{2} }{4}  \bigg )\\

\longrightarrow\:\: \underline{ \boxed{\sf v = \dfrac{ 2{a}^{2}  t }{4}}} \\

Now, the mean velocity of the particle averaged over the time that the particle takes to cover the first s metres of the path :

First we need to find the Time taken to cover first "s" distance :

\dashrightarrow\:\:\sf Distance (x) = Distance (s) = \dfrac{a^2t^2}{4} \\

\dashrightarrow\:\:\sf s = \dfrac{a^2t^2}{4} \\

\dashrightarrow\:\:\sf 4s = a^2t^2 \\

\dashrightarrow\:\:\sf t^2  =  \dfrac{4s}{ {a}^{2} } \\

\dashrightarrow\:\:\sf t=   \sqrt{\dfrac{4s}{ {a}^{2} }} \\

Finding the mean velocity of the particle :-

:\implies  \sf Average  \: Velocity = \dfrac{Total  \: Displacement}{Total  \: time  \: taken} \\

:\implies  \sf V_{av} = \dfrac{s}{t} \\

:\implies  \sf V_{av} = \dfrac{s}{  \sqrt{ \dfrac{4s}{ {a}^{2} }} } \\

:\implies  \sf V_{av} = \dfrac{ \sqrt{s}  \times  \sqrt{s} }{ \dfrac{2 \sqrt{s} }{ a } } \\

:\implies  \sf V_{av} = \dfrac{  \sqrt{s} }{  \dfrac{2}{ a } } \\

:\implies  \underline{ \boxed{ \sf V_{av} = \dfrac{  a\sqrt{s} }{ 2 } }}\\


Rythm14: Perfectto!
Anonymous: Thank you!
Ekaro: :meow_wow: :O
Anonymous: Thankieww .-.
Answered by aryan0183
5

Topic :- motion in straight line

Given that the velocity of a particle moving in the positive direction the x axis varies

as:-

Similar questions