Math, asked by yuvrajhero1, 1 year ago

1-2i/1-(1-i) ^2 convert into polar form ​

Answers

Answered by naushad55
5

Step-by-step explanation:

Question is,

z =  \frac{1 - 2i}{1 -  {(1 - i)}^{2} }  \\ to \: find \: the \: polar \: form \: it \: is \: necessary \: to \: convert \: it \: into \: standerd \: form \\ z =  \frac{1 - 2i}{1 - (1 +  {i}^{2}  - 2i)}  \\ z =  \frac{1 - 2i}{1 + 2i} \\ on \: rationalising \\ z =  \frac{1 - 2i}{1 + 2i}   \times  \frac{1 - 2i}{1 - 2i}  \\and \:  on \: solving \\ z =  \frac{ - 3}{5}  -  \frac{4i}{5}  \\

from here we can note that,

x =  \frac{ - 3}{5} \:  and \: y =  \frac{ - 4}{5}

then,

  { |z| }^{2}   =  {r}^{2}  =  {( \frac{ - 3}{5} )}^{2}  +   {(  \frac{ - 4}{5} )}^{2}  \\ so \:  |z|  = r = 1

we know that,

 \tan( \alpha )  =  | \frac{imaginary}{real} |  \\ on \: putting \: value \\  \tan( \alpha )  =  | \frac{ \frac{ - 4}{5} }{ \frac{ - 3}{5} } |  \\  \tan( \alpha )  =  \frac{4}{3}  \\ also \:  \sin( \alpha )  =  \frac{4}{5}  \\  \:  \:  \:  \ \:  \:  \:  \:  \: cos( \alpha )  =  \frac{3}{5}

on putting these value in the form,

z = r(\cos( \alpha )  + i \sin( \alpha ) ) \\  \:  z = 1( \ \ - cos( { \tan }^{ - 1} \frac{4}{3} ) + ( - i \sin( { \tan }^{ - 1}  \frac{4}{3} )) \\ finally \\ z = ( -  \cos( { \tan }^{ - 1} \frac{4}{3}  )  -  i \sin(  { \tan }^{ - 1}  \frac{4}{3} )

thank you

Similar questions