(1-2sina.cosa)/2=sin²(45-a)
Answers
Answered by
1
Answer:
see answer in attachment....
mark it brainliest..
Attachments:
Answered by
1
EXPLANATION.
Prove that.
⇒ [(1 - 2sin A cos A)/(2)] = sin²(π/4 - A).
As we know that,
Identities :
⇒ sin(α - β) = sinα cosβ - cosα sinβ.
Using this identities in this question, we get.
We solve R.H.S of the expression, we get.
⇒ sin²(π/4 - A) = sin²(45° - A).
⇒ sin²(45° - A) = [sin45° cos A - cos45° sin A]².
⇒ sin²(45° - A) = [1/√2 cos A - 1/√2 sin A]².
⇒ sin²(45° - A) = 1/2(cos A - sin A)².
⇒ sin²(45° - A) = 1/2(cos²A + sin²A - 2sinAcosA).
⇒ sin²(45° - A) = 1/2(1 - 2sinAcosA).
Hence Proved.
Similar questions