Math, asked by himeshsingh5292, 4 months ago

(1-2x)+(1+2x)/(4x+1)+(x-3)=1/2​

Answers

Answered by Flaunt
118

Solution

Step by step Explanation:

\sf\longmapsto(1 - 2x) +  \dfrac{1 + 2x}{4x + 1}  + (x - 3) =  \dfrac{1}{2}

\sf\longmapsto \dfrac{(1 - 2x)(4x + 1) + 1 + 2x + (4x + 1)(x - 3)}{4x + 1}  =  \dfrac{1}{2}

\sf\longmapsto4x + 1 - 8 {x}^{2}  - 2x + 1 + 2x + 4 {x}^{2}  - 12x + x - 3 =  \dfrac{1}{2} (4x + 1)

\sf\longmapsto - 4 {x}^{2}  - 7x - 1 =  \dfrac{4x + 1}{2}

\sf\longmapsto4x + 1 =  - 8 {x}^{2}  - 14x - 2

\sf\longmapsto - 8 {x}^{2}  - 18x - 3 = 0

\sf\longmapsto8 {x}^{2}  + 18x + 3 = 0

Here ,we use quadratic formula for further factorise:

\sf \boxed{x =   \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}}

\sf\longmapsto \: x =  \dfrac{ - 18 \pm \sqrt{ {(18)}^{2}  - 4(8)(3)} }{2 \times 8}

\sf\longmapsto \: x =  \dfrac{ - 18 \pm \sqrt{324 - 96} }{16}

\sf\longmapsto \: x =  \dfrac{ - 18 \pm \sqrt{228} }{16}

\sf\longmapsto \: x =  \dfrac{2( - 9 \pm2 \sqrt{57} )}{16}  =  \dfrac{ - 9 \pm \sqrt{57} }{8}

Answered by Anonymous
6

Answer:

always be happy☺️☺️☺️

...


Anant124: didi can you folow me
Anonymous: no
Anant124: pls didi
Similar questions