Math, asked by sannidhikarmakar669, 10 months ago

(1/2x+2/3y)^2 can any one please solve this?​

Answers

Answered by aaronjameshowlett
0

Answer:

 Slope = 1.500/2.000 = 0.750

 x-intercept = 12/3 = 4

 y-intercept = 12/-4 = 3/-1 = -3.00000

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

                    1/2*x-2/3*y-(2)=0  

Step by step solution :

Step  1  :

           2

Simplify   —

           3

Equation at the end of step  1  :

   1          2          

 ((— • x) -  (— • y)) -  2  = 0  

   2          3          

Step  2  :

           1

Simplify   —

           2

Equation at the end of step  2  :

   1         2y      

 ((— • x) -  ——) -  2  = 0  

   2         3      

Step  3  :

Calculating the Least Common Multiple :

3.1    Find the Least Common Multiple

     The left denominator is :       2  

     The right denominator is :       3  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 1 0 1

3 0 1 1

Product of all  

Prime Factors  2 3 6

     Least Common Multiple:

     6  

Calculating Multipliers :

3.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 3

  Right_M = L.C.M / R_Deno = 2

Making Equivalent Fractions :

3.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      x • 3

  ——————————————————  =   —————

        L.C.M               6  

  R. Mult. • R. Num.      2y • 2

  ——————————————————  =   ——————

        L.C.M               6    

Adding fractions that have a common denominator :

3.4       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

x • 3 - (2y • 2)     3x - 4y

————————————————  =  ———————

       6                6    

Equation at the end of step  3  :

 (3x - 4y)    

 ————————— -  2  = 0  

     6        

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  6  as the denominator :

        2     2 • 6

   2 =  —  =  —————

        1       6  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

4.2       Adding up the two equivalent fractions

(3x-4y) - (2 • 6)     3x - 4y - 12

—————————————————  =  ————————————

        6                  6      

Equation at the end of step  4  :

 3x - 4y - 12

 ————————————  = 0  

      6      

Step  5  :

When a fraction equals zero :

5.1    When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

Here's how:

 3x-4y-12

 ———————— • 6 = 0 • 6

    6    

Now, on the left hand side, the  6  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :

  3x-4y-12  = 0

Equation of a Straight Line

5.2     Solve   3x-4y-12  = 0

Tiger recognizes that we have here an equation of a straight line. Such an equation is usually written y=mx+b ("y=mx+c" in the UK).

"y=mx+b" is the formula of a straight line drawn on Cartesian coordinate system in which "y" is the vertical axis and "x" the horizontal axis.

In this formula :

y tells us how far up the line goes

x tells us how far along

m is the Slope or Gradient i.e. how steep the line is

b is the Y-intercept i.e. where the line crosses the Y axis

The X and Y intercepts and the Slope are called the line properties. We shall now graph the line  3x-4y-12  = 0 and calculate its properties

Similar questions