Math, asked by hanif52, 1 year ago

-1/3,0,1/3,2/3 are sequencesin A.P​

Answers

Answered by BrPiYuSHGuPtA
0

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \blue{ to \: show}} \\ { \pink{ \boxed{ \red{ \boxed{ \frac{ - 1}{3},0, \frac{1}{3},\frac{2}{3} \: }are \: in \: A.P}}}} \\

According to given question

We need to prove that the given sequence is in A.P

PROOF:

  \to a2 - a1 = a3 - a2 \\ \:  \:  \:  \:  \:  \:  \:  \: <strong>L</strong><strong>H</strong><strong>S</strong> \\   \to 0 - \frac{ - 1}{3}  \\  \to  \frac{1}{3}  \\  \:  \:  \:  \:  \:  \: <strong>R</strong><strong>H</strong><strong>S</strong>\\ \to   \frac{1}{3}  - 0 \\  \to  \frac{1}{3}  \\   \:  \:  \:  \:  \:  \: <strong>L</strong><strong>H</strong><strong>S</strong><strong>=</strong><strong>R</strong><strong>H</strong><strong>S</strong> \\

{\pink{\boxed{\green{\sf{So,\:given\:sequence\:in\:an\:A.P}}}}}

_________________________________________

Answered by ItSdHrUvSiNgH
2

Step-by-step explanation:

  - \frac{ 1}{3} , \: 0,\:  \frac{1}{3},  \:  \frac{2}{3}  \\  \\ a =  -  \frac{1}{3}  \\ t2 = 0 \\ t3 =  \frac{1}{3}  \\  \\ d = t2 - t1 = 0 - ( -  \frac{1}{3} ) =  \frac{1}{3}  \\ d = t3 - t2 =  \frac{2}{3}   -  \frac{1}{3}  =  \frac{1}{3}  \\  \\ as \: common \: difference \: is \: same \: \\ so \: they \: are \: in \: A. P

Similar questions