Math, asked by vk04, 6 months ago

(1/√3+√2) + (1/√5-√3) - (2/√3-√2)
simplify

Answers

Answered by Bidikha
1

Question -

Simplify

 =  \frac{1}{ \sqrt{3} +  \sqrt{2}  }  +  \frac{1}{ \sqrt{5}  -  \sqrt{3} }  -  \frac{2}{ \sqrt{3} -  \sqrt{2}  }

Solution -

 =  \frac{1}{ \sqrt{3}  +  \sqrt{2} }  +  \frac{1}{ \sqrt{5} -  \sqrt{3}  }  -  \frac{2}{ \sqrt{3} -  \sqrt{2}  }

By rationalising the denominator we will get -

 =  \frac{( \sqrt{3} -  \sqrt{2})  }{( \sqrt{3} +  \sqrt{2} )( \sqrt{3} -  \sqrt{2})   }  +  \frac{( \sqrt{5}  +  \sqrt{3} )}{( \sqrt{5}  -  \sqrt{3})( \sqrt{5} +  \sqrt{3}  ) }  -  \frac{2( \sqrt{3} +  \sqrt{2}  )}{( \sqrt{3} -  \sqrt{2}  )( \sqrt{3}  +  \sqrt{2}) }

 =  \frac{ \sqrt{3} -  \sqrt{2}  }{ {( \sqrt{3}) }^{2} -  {( \sqrt{2}) }^{2}  }  +  \frac{ \sqrt{5}  +  \sqrt{3} }{ {( \sqrt{5}) }^{2}   -  {( \sqrt{3}) }^{2} }  -  \frac{2 \sqrt{3} + 2 \sqrt{2}  }{ {( \sqrt{3} )}^{2}  -  {( \sqrt{2}) }^{2} }

 =  \frac{ \sqrt{3} -  \sqrt{2}  }{3 - 2}  +  \frac{ \sqrt{5} +  \sqrt{3}  }{5 - 3}  -  \frac{2 \sqrt{3} + 2 \sqrt{2}  }{3 - 2}

 =  \frac{ \sqrt{3}  -  \sqrt{2} }{1}  +  \frac{ \sqrt{5} +  \sqrt{3}  }{2}  -  \frac{2 \sqrt{3  }  + 2 \sqrt{2} }{1}

 =  \frac{2( \sqrt{3}  -  \sqrt{2}) +  \sqrt{5}   +  \sqrt{3}  - 2(2 \sqrt{3}  + 2 \sqrt{2} )}{2}

 = \frac{2\sqrt{3} - 2 \sqrt{2} + \sqrt{5} + \sqrt{3} - 4 \sqrt{3} - 4 \sqrt{2}} {2}

 =  \frac{3 \sqrt{3} - 4 \sqrt{3}   - 2 \sqrt{2}  - 4 \sqrt{2}  +  \sqrt{5} }{2}

 =  \frac{ -  \sqrt{3 }  - 6 \sqrt{2} +  \sqrt{5}  }{2}

  =  \frac{ \sqrt{5} - 6 \sqrt{2}   -  \sqrt{3} }{2}

Similar questions