1^3+2^3+3^3+......+k^3=16900 find 1 +2+3+.....+k?
Answers
Answered by
6
The value of 1 +2 +3 +.....+k = 130
Given:
1³ +2³ +3³ +......+k³ = 16900
To find:
Find the value of 1 +2 +3 +.....+k?
Solution:
Formula used:
Sum of cubes of n natural numbers = [n(n + 1)/2]²
Sum of n natural numbers = [n (n+1)]/2
Given that,
1³ +2³ +3³ +......+k³ = 16900
By the given formulas,
Sum of cubes of k numbers = [k(k + 1)/2]² ---- (1)
Sum of k numbers = [k (k+1)]/2 ----- (2)
Given that
1³ +2³ +3³ +......+k³ = 16900
=> [k(k + 1)/2]² = 16900
Apply cube root on both sides
=> √[k(k + 1)/2]² = √16900
=> k(k + 1)/2 = 130 -----(3)
From (2) and (3)
Sum of k numbers = 130
=> 1 + 2 + 3 + .. + k = 130
Therefore,
The value of 1 +2 +3 +.....+k = 130
#SPJ1
Similar questions