Math, asked by Kapilpahal8058, 11 months ago

1^3+2^3+3^3+.......+k^3=16900 then find 1+2+3+.....K

Answers

Answered by tanish725
0

Step-by-step explanation:

according to the question the answer will be 5360

Answered by jitumahi435
4

1 + 2 + 3 + ........ + K = 130

Step-by-step explanation:

We have,

1^3+2^3+3^3+.......+k^3 = 16900          

To find, 1 + 2 + 3 + ........ + K = ?

We know that,

1^3+2^3+3^3+.......+n^3=(\dfrac{n(n+1)}{2} )^2 and

1 + 2 + 3 + ........ + n = \dfrac{n(n+1)}{2}

1^3+2^3+3^3+.......+k^3 = 16900  

(\dfrac{k(k+1)}{2} )^2 = 16900

(\dfrac{k(k+1)}{2} )^2 = 130^2

\dfrac{k(k+1)}{2} = 130                 ......... (1)

∴ 1 + 2 + 3 + ........ + K

= \dfrac{k(k+1)}{2} = 130

Thus, 1 + 2 + 3 + ........ + K = 130

Similar questions