Math, asked by BrainlyPrince727, 1 month ago

(1/√3)² + √3² + 2 = (2/√3)² x 4

PROVE LHS=RHS

\frac{1}{\sqrt{3}}^{2} + \sqrt{3}^{2} +2 = \frac{2}{\sqrt{3}}^{2} × 4

Answers

Answered by neeruagarwal88
1

Step-by-step explanation:

 \frac{1}{9}  + 9 + 2 =  \frac{4}{9}  \times 4

 \frac{1 + 81 + 18}{9}  =  \frac{16}{9}

 \frac{100}{9}  = \frac{16}{9}

Hence, this not proven LHS= RHS

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\: {\bigg[\dfrac{1}{ \sqrt{3} } \bigg]}^{2} +  {( \sqrt{3} )}^{2}  + 2

\rm \:  =  \: \dfrac{1}{3}  + 3 + 2

\rm \:  =  \: \dfrac{1}{3}  + 5

\rm \:  =  \: \dfrac{1}{3}  + \dfrac{5}{1}

\rm \:  =  \: \dfrac{1 + 5 \times 3}{3}

\rm \:  =  \: \dfrac{1 + 15}{3}

\rm \:  =  \: \dfrac{16}{3}

Hence,

\rm :\longmapsto\: \boxed{ \tt{ \: {\bigg[\dfrac{1}{ \sqrt{3} } \bigg]}^{2} +  {( \sqrt{3} )}^{2}  + 2 =  \frac{16}{3} \: }} -  -  -  - (1)

Now, Consider RHS

\rm :\longmapsto\: {\bigg[\dfrac{2}{ \sqrt{3} } \bigg]}^{2}  \times 4

\rm \:  =  \: \dfrac{4}{3}  \times 4

\rm \:  =  \: \dfrac{16}{3}

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \:  {\bigg[\dfrac{2}{ \sqrt{3} } \bigg]}^{2}  \times 4 =  \frac{16}{3} \: }} -  -  - (2)

From equation (1) and equation (2), we concluded that

\rm :\longmapsto\: \boxed{ \tt{ \: {\bigg[\dfrac{1}{ \sqrt{3} } \bigg]}^{2} +  {( \sqrt{3} )}^{2}  + 2 =  {\bigg[\dfrac{2}{ \sqrt{3} } \bigg]}^{2} \times 4 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know :-

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions