Math, asked by SmeloRey, 1 year ago

1+3+3²+...+3n-1=(3n-1)/2

Answers

Answered by mysticd
3

Answer:

\red { 1+3+3^{2}+\cdot\cdot\cdot+3^{n-1}}

 \green { =  \frac{3^{n-1}}{2}}

Step-by-step explanation:

 Given \: 1 , 3 , 3^{2} , \cdot\cdot\cdot ,3^{n-1}

 First \:term (a) = 1

 \frac{a_{2}}{a_{1}} = \frac{3}{1} = 3

 \frac{a_{3}}{a_{2}} = \frac{3^{2}}{3} = 3

 \frac{a_{2}}{a_{1}} =   \frac{a_{3}}{a_{2}} = 3

 Therefore, given \: sequence \:is \:in \:GP

 Common \:ratio (r) = 3

 Now , LHS = 1+3+3^{2}+\cdot\cdot\cdot+3^{n-1}\\= \frac{ 1(3^{n} - 1)}{3-1}

 \boxed { \pink { Sum \:of \: n \: terms (S_{n}) = \frac{ a(r^{n} - 1)}{(r-1)} }}

 = \frac{3^{n-1}}{2}

 = RHS

 Hence ,\: Proved .

•••♪

Similar questions