Math, asked by thikana20, 9 months ago

1/3(cos^3a sin3a+sin^3a cos3a)=1/4sin4a

Answers

Answered by Shanaia015
1

Recall that,

#cos3A=4cos^3A-3cosA, &, sin3A=3sinA-4sin^3A.#

Sub.ing these, we have,

#:." The L.H.S.="cos^3A(4cos^3A-3cosA)+sin^3A(3sinA-4sin^3A),#

#=4cos^6A-3cos^4A+3sin^4A-4sin^6A,#

#=4(cos^6A-sin^6A)-3(cos^4A-sin^4A),#

#=4{(cos^2A)^3-(sin^2A)^3}-3{(cos^2A)^2-(sin^2A)^2},#

#=4{cos^2A-sin^2A){(cos^2A)^2+cos^2Asin^2A+(sin^2A)^2}#

#-3(cos^2A-sin^2A)(cos^2A+sin^2A),#

#=(cos^2A-sin^2A)[4{(cos^2A)^2+cos^2Asin^2A+(sin^2A)^2}-3*1],#

#=(cos^2A-sin^2A)[4cos^4A+4cos^2Asin^2A+4sin^4A-3(cos^2A+sin^2A)^2],#

#=(cos^2A-sin^2A)[4cos^4A+4cos^2Asin^2A+4sin^4A-3(cos^4A+2cos^2Asin^2A+sin^4a)],#

#=(cos^2A-sin^2A)[cos^4A-2cos^2Asin^2A+sin^4A],#

#=(cos^2A-sin^2A)(cos^2A-sin^2A)^2,#

#=(cos^2A-sin^2A)^3,#

#=(cos2A)^3,#

#=cos^3 2A,#

#"=The R.H.S."#

Enjoy Maths.!

Similar questions