Math, asked by Anam3910, 1 year ago

1 + 3 cos square theta into cot square theta + cot cot 6 theta is equal to cos 6 theta

Answers

Answered by pulakmath007
3

SOLUTION

TO PROVE

 \sf{1 + 3  \: { cosec}^{2}  \theta \:  {cot}^{2} \theta +  {cot}^{6} \theta  = {cosec}^{6} \theta }

EVALUATION

We are aware of the Trigonometric formula that

 \sf{{ cosec}^{2}  \theta  - \:  {cot}^{2} \theta  = 1 }

Cubing both sides we get

 \sf{({{ cosec}^{2}  \theta  - \:  {cot}^{2} \theta )}^{3}  = 1 }

 \sf{ \implies \: ({{ cosec}^{2}  \theta) }^{3}-{ (\:  {cot}^{2} \theta )}^{3} -3{ cosec}^{2}  \theta  . \:  {cot}^{2} \theta ({ cosec}^{2}  \theta  - \:  {cot}^{2} \theta )= 1 }

 \sf{ \implies \: {cosec}^{6} \theta  -  {cot}^{6} \theta  -  3  \: { cosec}^{2}  \theta \:  {cot}^{2} \theta .1 - 1 = 0 }

 \sf{ \implies \:  {cosec}^{6} \theta = 1 + 3  \: { cosec}^{2}  \theta \:  {cot}^{2} \theta +  {cot}^{6} \theta  }

 \sf{ \implies \: 1 + 3  \: { cosec}^{2}  \theta \:  {cot}^{2} \theta +  {cot}^{6} \theta  = {cosec}^{6} \theta }

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Answered by mathdude500
4

\large\underline{\sf{Appropriate \:Question - }}

Prove that

 \rm \:  1 + 3 {cosec}^{2}\theta  {cot}^{2} \theta  +  {cot}^{6}\theta  =  {cosec}^{6}\theta

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\: {cosec}^{6}\theta

can be rewritten as

\rm \:  =  \:  \:  {( {cosec}^{2} \theta )}^{3}

We know that,

\boxed{ \bf{ \:  {cosec}^{2}x -  {cot}^{2}x = 1}}

So, using this

\rm \:  =  \:  \:  {(1 +  {cot}^{2} \theta )}^{3}

We know that

\boxed{ \bf{ \:  {(x + y)}^{3} =  {x}^{3}  +  {y}^{3} + 3xy(x + y)}}

So, using this identity, we get

\rm \:  =  \:  \:  {(1)}^{3} +  {( {cot}^{2} \theta )}^{3} + 3.1. {cot}^{2}\theta (1 +  {cot}^{2}\theta )

\rm \:  =  \:  \: 1 +  {cot}^{6}\theta  + 3 {cot}^{2}\theta  {cosec}^{2} \theta

\red{\bigg \{ \because \:  {cosec}^{2}x -  {cot}^{2}x = 1\bigg \}}

Hence,

 \boxed{ \bf{ \: \bf \:  1 + 3 {cosec}^{2}\theta   \: {cot}^{2} \theta  +  {cot}^{6}\theta  =  {cosec}^{6}\theta }}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions