Math, asked by palmalfoy, 1 year ago

1/3x-1/7y=2/3 1/2x-1/3y=1/6
Based on equations reducible to linear equation.​

Answers

Answered by MaheswariS
18

Answer:

solution:

x=\frac{1}{5}

y=\frac{1}{7}

Step-by-step explanation:

\frac{1}{3x}-\frac{1}{7y}=\frac{2}{3}

\frac{1}{2x}-\frac{1}{3y}=\frac{1}{6}

The given equations can be written as

\frac{1}{3}(\frac{1}{x})-\frac{1}{7}(\frac{1}{y})=\frac{2}{3}

\frac{1}{2}(\frac{1}{x})-\frac{1}{3}(\frac{1}{y})=\frac{1}{6}

Take

u=\frac{1}{x}

v=\frac{1}{y}

we get

\frac{1}{3}u-\frac{1}{7}v=\frac{2}{3}

\frac{1}{2}u-\frac{1}{3}v=\frac{1}{6}

That is

7u - 3v =14

3u - 2v = 1

Now, we solve these equations by cross multiplication rule.

7u - 3v -14 =0

3u - 2v - 1 = 0

\frac{u}{3-28}=\frac{v}{-42+7}=\frac{1}{-14+9}

\frac{u}{-25}=\frac{v}{--35}=\frac{1}{-5}

\frac{u}{-25}=\frac{1}{-5}

u=\frac{-25}{-5}

u=5

\frac{v}{--35}=\frac{1}{-5}

v=\frac{-35}{-5}

v=7

u=5

implies \frac{1}{x}=5

x=\frac{1}{5}

v=7

implies \frac{1}{y}=7

y=\frac{1}{7}

Similar questions