Math, asked by swetabhch7686, 11 months ago

1/3x-y + 1/3x-y = 12/35 ; 1/2(3x+y) - 1/2(3x-y) = 2/35

Answers

Answered by MaheswariS
3

\textbf{Given:}

\displaystyle\frac{1}{3x+y}+\frac{1}{3x-y}=\frac{12}{35}

\displaystyle\frac{1}{2(3x+y)}-\frac{1}{2(3x-y)}=\frac{2}{35}

\textbf{To find: x and y}

\text{The given equations can be written as}

\displaystyle\frac{1}{3x+y}+\frac{1}{3x-y}=\frac{12}{35} ........(1)

\displaystyle\frac{1}{3x+y}-\frac{1}{3x-y}=\frac{4}{35}...(2)

\text{Adding (1) and (2), we get}

\displaystyle\frac{2}{3x+y}=\frac{16}{35}

\displaystyle\frac{1}{3x+y}=\frac{8}{35}

\text{(1) gives}

\displaystyle\frac{8}{35}+\frac{1}{3x-y}=\frac{12}{35}

\displaystyle\frac{1}{3x-y}=\frac{12}{35}-\frac{8}{35}

\displaystyle\frac{1}{3x-y}=\frac{4}{35}

\text{Now, we have}

3x+y=\frac{35}{8}

3x-y=\frac{35}{4}

\text{Adding these equations, we get}

6x=\frac{70+35}{8}

6x=\frac{105}{8}

2x=\frac{35}{8}

\implies\boxed{\bf,x=\frac{35}{16}}

3x+y=\frac{35}{8}\implies\,3(\frac{35}{16})+y=\frac{35}{8}

\frac{105}{16}+y=\frac{35}{8}

\implies\,y=\frac{35}{8}-\frac{105}{16}

\implies\,y=\frac{70-105}{16}

\implies\boxed{\bf\,y=\frac{-35}{16}}

\therefore\textbf{The solution is $\bf\,x=\frac{35}{16}$ and $\bf\,y=\frac{-35}{16}$}

Find more:

1.Solve: 6/x-1- 3/y-2=1, 5/x-1+1/y-2=2, where x is not 1 and y is not 2

https://brainly.in/question/3196729

2.Solve the following pair of equation by reducing them to a pair of linear equation 5 by X + Y + 1 by x minus y equal to 2 10 by X + y + 3 by x minus y is equal to 5

https://brainly.in/question/15082255

Answered by codiepienagoya
1

The final answer is x= 1.24 and y = -2.11

Step-by-step explanation:

\ Given \ value:\\\\\frac{1}{3x-y}+\frac{1}{3x-y} = \frac{12}{35}\ and  \ \frac{1}{2(3x+y)} - \frac{1}{2(3x-y)}= \frac{2}{35} \\\\\ Find:\\\\x \ and \ y = ?\\\\ \ Solution: \\\\\frac{1}{3x-y}+\frac{1}{3x-y} = \frac{12}{35}........(i)\\\\ \frac{1}{2(3x+y)} - \frac{1}{2(3x-y)}= \frac{2}{35}.......(ii) \\\\\ Solve \ equation (i)\\\\\ Equation: \\\\ \frac{1}{3x-y}+\frac{1}{3x-y} = \frac{12}{35}\\\\\rightarrow \frac{1+1}{(3x-y)} = \frac{12}{35}\\\\\rightarrow \frac{2}{(3x-y)} = \frac{12}{35}

\ cross \ multiply:\\\\\rightarrow 2\times 35 = (3x-y)12\\\\\rightarrow70 = 36x-12y\\\\\rightarrow70 +12y= 36x\\\\\rightarrow 36x = 70 +12y\\\\\rightarrow x = \frac{70 +12y}{36}\\\\\rightarrow x = \frac{(35 +6y)}{18}\\\\

\ Solve \ equation \ (ii)\\

\frac{1}{2(3x+y)} - \frac{1}{2(3x-y)}= \frac{2}{35} \\\\\rightarrow  \frac{(3x-y)-(3x+y)}{2(3x+y)(3x-y)} = \frac{2}{35}\\\\\rightarrow  \frac{(3x-y-3x-y)}{2((3x)^2-(y)^2)} = \frac{2}{35}\\\\\rightarrow  \frac{(-2y)}{(18x^2-2y^2)} = \frac{2}{35}\\\\\rightarrow  -70y = 36x^2-4y^2\\\\\rightarrow  4y^2-70y = 36x^2\\\\\rightarrow  x^2= \frac{4y^2-70y}{36}\\\\\rightarrow  x^2= \frac{(2y^2-35y)}{18}\\\\

\ put \ the \ calculated \ value \ of \ in \ above \ equation:\\\\x = \frac{35+6y}{18}\\\\x^2 =(\frac{35+6y}{18})^2\\\\x^2= \frac{1225+36y^2+420}{324}\\\\\ compare \ both \ value:\\\\\frac{1225+36y^2+420}{324} = \frac{2y^2-35y}{18}\\\\

(1225+36y^2+420) = \frac{(2y^2-35y)}{18} \times 324\\\\(1225+36y^2+420) = (2y^2-35y) \times 18\\\\1225+36y^2+420 = 36y^2-630y\\\\1645=-630y\\\\y= - \frac{1645}{630}\\\\y= -2.11\\\\\ put \ the \ value \ y \ in \ equation \ (i) \\\\\ equation\\\\ x= \frac{35+6y}{18}\\\\x= \frac{35+6(-2.11)}{18}\\\\x= \frac{22.34}{18}\\\\x= 1.24\\

Learn more:

  • Find the value: https://brainly.in/question/7833010
Similar questions