Sociology, asked by manjotsingh6232, 10 months ago

1. ਰੇਨ 5ਜ ਵਿੱਚੋਂ ਕਿਹੜਾ ਰੋਕਥਾਮ ਦਾ ਸੈਕੰਡਰੀ ਪੱਧਰ ਹੈ
ਹੈ, ਸਿਹਤ ਪ੍ਰੋਮੋਸ਼ਨ
b. ਜਲਦੀ ਤਸ਼ਖ਼ੀਸ (diagnosis) ਅਤੇ ਇਲਾਜ
c. ਅਪਾਹਜਤਾ ਨੂੰ ਸੀਮਤ ਕਰਨਾ
d. • ਖਾਸ ਸੁਰੱਖਿਆ​

Answers

Answered by rk1632847
0

Answer:

c.

.i hope my answer will help you

Answered by alexmalderana
0

Answer:

Nomenclature Equations

Radioactive decay

N0 = Initial number of atoms

N = Number of atoms at time t

λ = Decay constant

t = Time

Statistical decay of a radionuclide:

{\displaystyle {\frac {\mathrm {d} N}{\mathrm {d} t}}=-\lambda N} \frac{\mathrm{d} N}{\mathrm{d} t} = - \lambda N

{\displaystyle N=N_{0}e^{-\lambda t}\,\!} N = N_0e^{-\lambda t}\,\!

Bateman's equations {\displaystyle c_{i}=\prod _{j=1,i\neq j}^{D}{\frac {\lambda _{j}}{\lambda _{j}-\lambda _{i}}}} c_{i}=\prod _{j=1,i\neq j}^{D}{\frac {\lambda _{j}}{\lambda _{j}-\lambda _{i}}} {\displaystyle N_{D}={\frac {N_{1}(0)}{\lambda _{D}}}\sum _{i=1}^{D}\lambda _{i}c_{i}e^{-\lambda _{i}t}} N_{D}={\frac {N_{1}(0)}{\lambda _{D}}}\sum _{i=1}^{D}\lambda _{i}c_{i}e^{-\lambda _{i}t}

Radiation flux

I0 = Initial intensity/Flux of radiation

I = Number of atoms at time t

μ = Linear absorption coefficient

x = Thickness of substance

{\displaystyle I=I_{0}e^{-\mu x}\,\!} I = I_0e^{-\mu x}\,\!

Nuclear scattering theory Edit

The following apply for the nuclear reaction:

a + b ↔ R → c

in the centre of mass frame, where a and b are the initial species about to collide, c is the final species, and R is the resonant state.

Physical situation Nomenclature Equations

Breit-Wigner formula

E0 = Resonant energy

Γ, Γab, Γc are widths of R, a + b, c respectively

k = incoming wavenumber

s = spin angular momenta of a and b

J = total angular momentum of R

Cross-section:

{\displaystyle \sigma (E)={\frac {\pi g}{k^{2}}}{\frac {\Gamma _{ab}\Gamma _{c}}{(E-E_{0})^{2}+\Gamma ^{2}/4}}} \sigma(E) = \frac{\pi g}{k^2}\frac{\Gamma_{ab}\Gamma_c}{(E-E_0)^2+\Gamma^2/4}

Spin factor:

{\displaystyle g={\frac {2J+1}{(2s_{a}+1)(2s_{b}+1)}}} g = \frac{2J+1}{(2s_a+1)(2s_b+1)}

Total width:

{\displaystyle \Gamma =\Gamma _{ab}+\Gamma _{c}} \Gamma = \Gamma_{ab} + \Gamma_c

Resonance lifetime:

{\displaystyle \tau =\hbar /\Gamma } \tau = \hbar/\Gamma

Born scattering

r = radial distance

μ = Scattering angle

A = 2 (spin-0), −1 (spin-half particles)

Δk = change in wavevector due to scattering

V = total interaction potential

V = total interaction potential

Differential cross-section:

{\displaystyle {\frac {d\sigma }{d\Omega }}=\left|{\frac {2\mu }{\hbar ^{2}}}\int _{0}^{\infty }{\frac {\sin(\Delta kr)}{\Delta kr}}V(r)r^{2}dr\right|^{2}} \frac{d\sigma}{d\Omega} = \left|\frac{2\mu}{\hbar^2}\int_0^\infty\frac{\sin(\Delta kr)}{\Delta kr}V(r)r^2dr\right|^2

Similar questions