Sociology, asked by manjotsingh6232, 9 months ago

1. ਰੇਨ 5ਜ ਵਿੱਚੋਂ ਕਿਹੜਾ ਰੋਕਥਾਮ ਦਾ ਸੈਕੰਡਰੀ ਪੱਧਰ ਹੈ
ਹੈ, ਸਿਹਤ ਪ੍ਰੋਮੋਸ਼ਨ
b. ਜਲਦੀ ਤਸ਼ਖ਼ੀਸ (diagnosis) ਅਤੇ ਇਲਾਜ
c. ਅਪਾਹਜਤਾ ਨੂੰ ਸੀਮਤ ਕਰਨਾ
d. • ਖਾਸ ਸੁਰੱਖਿਆ​

Answers

Answered by rk1632847
0

Answer:

c.

.i hope my answer will help you

Answered by alexmalderana
0

Answer:

Nomenclature Equations

Radioactive decay

N0 = Initial number of atoms

N = Number of atoms at time t

λ = Decay constant

t = Time

Statistical decay of a radionuclide:

{\displaystyle {\frac {\mathrm {d} N}{\mathrm {d} t}}=-\lambda N} \frac{\mathrm{d} N}{\mathrm{d} t} = - \lambda N

{\displaystyle N=N_{0}e^{-\lambda t}\,\!} N = N_0e^{-\lambda t}\,\!

Bateman's equations {\displaystyle c_{i}=\prod _{j=1,i\neq j}^{D}{\frac {\lambda _{j}}{\lambda _{j}-\lambda _{i}}}} c_{i}=\prod _{j=1,i\neq j}^{D}{\frac {\lambda _{j}}{\lambda _{j}-\lambda _{i}}} {\displaystyle N_{D}={\frac {N_{1}(0)}{\lambda _{D}}}\sum _{i=1}^{D}\lambda _{i}c_{i}e^{-\lambda _{i}t}} N_{D}={\frac {N_{1}(0)}{\lambda _{D}}}\sum _{i=1}^{D}\lambda _{i}c_{i}e^{-\lambda _{i}t}

Radiation flux

I0 = Initial intensity/Flux of radiation

I = Number of atoms at time t

μ = Linear absorption coefficient

x = Thickness of substance

{\displaystyle I=I_{0}e^{-\mu x}\,\!} I = I_0e^{-\mu x}\,\!

Nuclear scattering theory Edit

The following apply for the nuclear reaction:

a + b ↔ R → c

in the centre of mass frame, where a and b are the initial species about to collide, c is the final species, and R is the resonant state.

Physical situation Nomenclature Equations

Breit-Wigner formula

E0 = Resonant energy

Γ, Γab, Γc are widths of R, a + b, c respectively

k = incoming wavenumber

s = spin angular momenta of a and b

J = total angular momentum of R

Cross-section:

{\displaystyle \sigma (E)={\frac {\pi g}{k^{2}}}{\frac {\Gamma _{ab}\Gamma _{c}}{(E-E_{0})^{2}+\Gamma ^{2}/4}}} \sigma(E) = \frac{\pi g}{k^2}\frac{\Gamma_{ab}\Gamma_c}{(E-E_0)^2+\Gamma^2/4}

Spin factor:

{\displaystyle g={\frac {2J+1}{(2s_{a}+1)(2s_{b}+1)}}} g = \frac{2J+1}{(2s_a+1)(2s_b+1)}

Total width:

{\displaystyle \Gamma =\Gamma _{ab}+\Gamma _{c}} \Gamma = \Gamma_{ab} + \Gamma_c

Resonance lifetime:

{\displaystyle \tau =\hbar /\Gamma } \tau = \hbar/\Gamma

Born scattering

r = radial distance

μ = Scattering angle

A = 2 (spin-0), −1 (spin-half particles)

Δk = change in wavevector due to scattering

V = total interaction potential

V = total interaction potential

Differential cross-section:

{\displaystyle {\frac {d\sigma }{d\Omega }}=\left|{\frac {2\mu }{\hbar ^{2}}}\int _{0}^{\infty }{\frac {\sin(\Delta kr)}{\Delta kr}}V(r)r^{2}dr\right|^{2}} \frac{d\sigma}{d\Omega} = \left|\frac{2\mu}{\hbar^2}\int_0^\infty\frac{\sin(\Delta kr)}{\Delta kr}V(r)r^2dr\right|^2

Similar questions