1. ਰੇਨ 5ਜ ਵਿੱਚੋਂ ਕਿਹੜਾ ਰੋਕਥਾਮ ਦਾ ਸੈਕੰਡਰੀ ਪੱਧਰ ਹੈ
ਹੈ, ਸਿਹਤ ਪ੍ਰੋਮੋਸ਼ਨ
b. ਜਲਦੀ ਤਸ਼ਖ਼ੀਸ (diagnosis) ਅਤੇ ਇਲਾਜ
c. ਅਪਾਹਜਤਾ ਨੂੰ ਸੀਮਤ ਕਰਨਾ
d. • ਖਾਸ ਸੁਰੱਖਿਆ
Answers
Answer:
c.
.i hope my answer will help you
Answer:
Nomenclature Equations
Radioactive decay
N0 = Initial number of atoms
N = Number of atoms at time t
λ = Decay constant
t = Time
Statistical decay of a radionuclide:
{\displaystyle {\frac {\mathrm {d} N}{\mathrm {d} t}}=-\lambda N} \frac{\mathrm{d} N}{\mathrm{d} t} = - \lambda N
{\displaystyle N=N_{0}e^{-\lambda t}\,\!} N = N_0e^{-\lambda t}\,\!
Bateman's equations {\displaystyle c_{i}=\prod _{j=1,i\neq j}^{D}{\frac {\lambda _{j}}{\lambda _{j}-\lambda _{i}}}} c_{i}=\prod _{j=1,i\neq j}^{D}{\frac {\lambda _{j}}{\lambda _{j}-\lambda _{i}}} {\displaystyle N_{D}={\frac {N_{1}(0)}{\lambda _{D}}}\sum _{i=1}^{D}\lambda _{i}c_{i}e^{-\lambda _{i}t}} N_{D}={\frac {N_{1}(0)}{\lambda _{D}}}\sum _{i=1}^{D}\lambda _{i}c_{i}e^{-\lambda _{i}t}
Radiation flux
I0 = Initial intensity/Flux of radiation
I = Number of atoms at time t
μ = Linear absorption coefficient
x = Thickness of substance
{\displaystyle I=I_{0}e^{-\mu x}\,\!} I = I_0e^{-\mu x}\,\!
Nuclear scattering theory Edit
The following apply for the nuclear reaction:
a + b ↔ R → c
in the centre of mass frame, where a and b are the initial species about to collide, c is the final species, and R is the resonant state.
Physical situation Nomenclature Equations
Breit-Wigner formula
E0 = Resonant energy
Γ, Γab, Γc are widths of R, a + b, c respectively
k = incoming wavenumber
s = spin angular momenta of a and b
J = total angular momentum of R
Cross-section:
{\displaystyle \sigma (E)={\frac {\pi g}{k^{2}}}{\frac {\Gamma _{ab}\Gamma _{c}}{(E-E_{0})^{2}+\Gamma ^{2}/4}}} \sigma(E) = \frac{\pi g}{k^2}\frac{\Gamma_{ab}\Gamma_c}{(E-E_0)^2+\Gamma^2/4}
Spin factor:
{\displaystyle g={\frac {2J+1}{(2s_{a}+1)(2s_{b}+1)}}} g = \frac{2J+1}{(2s_a+1)(2s_b+1)}
Total width:
{\displaystyle \Gamma =\Gamma _{ab}+\Gamma _{c}} \Gamma = \Gamma_{ab} + \Gamma_c
Resonance lifetime:
{\displaystyle \tau =\hbar /\Gamma } \tau = \hbar/\Gamma
Born scattering
r = radial distance
μ = Scattering angle
A = 2 (spin-0), −1 (spin-half particles)
Δk = change in wavevector due to scattering
V = total interaction potential
V = total interaction potential
Differential cross-section:
{\displaystyle {\frac {d\sigma }{d\Omega }}=\left|{\frac {2\mu }{\hbar ^{2}}}\int _{0}^{\infty }{\frac {\sin(\Delta kr)}{\Delta kr}}V(r)r^{2}dr\right|^{2}} \frac{d\sigma}{d\Omega} = \left|\frac{2\mu}{\hbar^2}\int_0^\infty\frac{\sin(\Delta kr)}{\Delta kr}V(r)r^2dr\right|^2