1/a+b+x=1/a+1/b+1/x find the value of x
Inflameroftheancient:
Can you use the LaTeX keyboard and edit the question? It'll make it more easy to visualise and seek what "you actually want", would appreciate that if you "do it"
Answers
Answered by
1
I think it will be helpful to you ..
[(1/a-1/a) + (b-1/b)] = (1/x-x)
[(b^2 - 1)/b] = (1-x^2)/x
(b^2)x - x = b - (x^2)b
the value of x will be 1/b and -b .///
[(1/a-1/a) + (b-1/b)] = (1/x-x)
[(b^2 - 1)/b] = (1-x^2)/x
(b^2)x - x = b - (x^2)b
the value of x will be 1/b and -b .///
Attachments:
Answered by
34
1/a+b+x = 1/a+1/b+1/x
1/a+b+x = bx+ax+ab/abx
(a+b+x) (bx+ax+ab) = abx
abx+a²x+a²b+b²x+abx+ab²+bx²+ax²+abx = abx
(a+b)x² + (a²+b²)x + 3abx-abx + ab(a+b) = 0
(a+b)x² + (a²+b²)x + 2abx + ab(a+b) = 0
(a+b)x² + (a²+b²+2ab)x + ab(a+b) = 0
(a+b)x² + (a+b)²x + ab(a+b) = 0
(a+b) [x²+(a+b)x+ab] = 0
(a+b) [x²+ax+bx+ab] = 0
(a+b) [x(x+a)+b(x+a)] = 0
(a+b) [(x+a)(x+b) ] = 0
(x+a)(x+b) = 0/(a+b)
(x+a)(x+b)=0
x = -a and x = -b
Similar questions