Physics, asked by namanmahawar1456, 9 months ago



1. A car weighing 2400 kg and moving with a velocity of 20 m/s is stopped in 10s on applying breaks. Calculate the retardation and retarding force?

Answers

Answered by Anonymous
5

Mass (m) = 2400 kg

Initial velocity (u) = 20 m/s

Final velocity (v) = 0

Time taken (t) = 10 s

 \boxed { \purple{ \rm{Retardation \: (a) = \frac{v - u}{t} }}}

\rm a =  \frac{0 - 20}{10}  \\ \rm a =   \frac{ - 20}{10}  \\ \rm{ \red {a =  - 2 \: m {s}^{ - 2} }}

 \boxed{ \purple{ \rm {Retardation  \: Force \:(F)  = ma}}}

\rm F = 2400 \times  - 2 \\  \rm{\red{F =  - 4800~N}}

Answered by Blossomfairy
3

Given :

  • Mass (m) = 2400 kg
  • Initial velocity (u) = 20 m/s
  • Final velocity (v) = 0 m/s
  • Time (t) = 10 seconds

To find :

  • The retardation

Retardation is also called negative acceleration.

According to the question,

\star \: \boxed{\sf \red{Acceleration  \: (a)=  \frac{v - u}{t} }}

Here we will consider acceleration as retardation

So,the formula will be :

\star \: \boxed{\sf \red{Retardation =  \frac{v - u}{t} }}

 \sf{ \:  \:  \:  \:   :\implies \frac{0 - 20}{10} }

 \sf{ \:  \:  \:  \:   :\implies \frac{ - 20}{10} }

\sf{ \:  \:  \:  \:   :\implies  2 \: ms {}^{ - 1}   } \:  \orange\bigstar

Now we will calculate force (F) :

\star  \:  \boxed{\sf \red{ F =ma }}

Where,

F stands for Force

a stands for Acceleration

m stands for Mass

So according to the formula we put the value

\sf {  \:  \:  \:  \:  :  \implies2400 \times ( - 2)}

\sf {  \:  \:  \:  \:  :  \implies-4800 \: N}\:\:\orange\bigstar

Similar questions