Math, asked by ComputER174, 11 months ago

1.A conical tent was erected by the army
at a base camp with height 3m. and base
diameter 8m. Find the cost of canvas
required for making the tent, if the canvas
cost 70 per 1 sq.m.

Answers

Answered by Anonymous
15

 \huge\mathbb \red{ANSWER}

_____________________________________

 \sf  \huge\underline{Question}

A conical tent was erected by the army at a base camp with height 3m. and base

diameter 8m.

Find the cost of canvas required for making the tent, if the canvas cost 70 per 1 sq.m.

_____________________________________

 \sf  \huge\underline{Given}

 \tt \implies \red{diamter = 3m}

 \tt \implies \blue{r =  \dfrac{d}{2} =  \dfrac{8}{2} = 4m}

 \tt \implies \pink{height \: is \: 3m}

  • do u know slant height...

 \tt \implies \purple{slant \: height = (l) =  \sqrt{ {h}^{2} +  {r}^{2}  }}

 \tt \implies \purple{ =  \sqrt{ {3}^{2} +  {4}^{2}  =  \sqrt{25} = 5m }}

  • now curved surface area of tent and volume of cone

______________________________________

 \rm{ \boxed{ \underline\blue{ \tt{ \: curved \: area \: of \: tent = \pi \: rl \: }}}}

 \rm \implies \red{ \frac{22}{7} \times 4 \times 5 =  \frac{440}{7}  {m}^{2}}

_____________________________________

  • now volume of cone

\rm{ \boxed{ \underline\blue{ \tt{ \: volume \: of \: cone =  \frac{1}{3} \pi \:  {r}^{2}h \: }}}}

 \tt \implies \green{ =  \dfrac{1}{3} \times  \dfrac{22}{7} \times 4 \times 4 \times 3}

 \tt \implies \orange{ \dfrac{352}{7} {m}^{2}}

______________________________________

Given:

Find the cost of canvas required for making the tent, if the canvas cost 70 per 1 sq.m.

_____________________________________

 \sf \underline{cost \: of \: canvas \: fr \: tent}

 \sf \implies \blue{csa \times unit}

 \sf \implies \orange{ =  \dfrac{440}{70} \times 70}

 \sf \implies \purple{ = 4400 \: rupees}

Answered by krishrajput98
0

hlo

❤▬▬▬▬▬❤▬▬▬▬▬▬❤

Question - conical tent was erected by the army at a base camp with height 3m. and base

diameter 8m.

Find the cost of canvas required for making the tent, if the canvas cost 70 per 1 sq.m.

❤▬▬▬▬▬▬❤▬▬▬▬▬❤

Given -

Diameter - 3cm

r=2d=28=4m</p><p></p><p>\tt \implies \pink{height \: is \: 3m}⟹heightis3m</p><p></p><p>do u know slant height...</p><p></p><p>\tt \implies \purple{slant \: height = (l) = \sqrt{ {h}^{2} + {r}^{2} }}⟹slantheight=(l)=h2+r2</p><p></p><p>\tt \implies \purple{ = \sqrt{ {3}^{2} + {4}^{2} = \sqrt{25} = 5m }}</p><p></p><p>

⟹=32+42=25=5m

  • now curved surface area of tent and volume of cone

❤▬▬▬▬▬▬▬▬❤▬▬▬▬▬❤

Curved area of tent -

</p><p>722×4×5=7440m2</p><p></p><p>_____________________________________</p><p></p><p>now volume of cone</p><p></p><p>\rm{ \boxed{ \underline\blue{ \tt{ \: volume \: of \: cone = \frac{1}{3} \pi \: {r}^{2}h \: }}}}volumeofcone=31πr2h</p><p></p><p>\tt \implies \green{ = \dfrac{1}{3} \times \dfrac{22}{7} \times 4 \times 4 \times 3}</p><p></p><p>

now volume of cone</p><p></p><p>\rm{ \boxed{ \underline\blue{ \tt{ \: volume \: of \: cone = \frac{1}{3} \pi \: {r}^{2}h \: }}}}volumeofcone=31πr2h</p><p></p><p></p><p>

so answer will be 4450 rupess

Similar questions