Math, asked by kmathew20112005, 11 months ago

1. A kite is flying at a height of 75m
from the level ground, attached to a
string inclined at 60° to the
horizontal. Find the length of the
string?​

Answers

Answered by sourya1794
16

{\bold{\huge{\blue{\underline{\red{Gi}\pink{ve}\green{n}\purple{:-}}}}}}

  • AB = 75 m

  • ∠ ACB = 60°

{\bold{\huge{\pink{\underline{\pink{F}\purple{in}\blue{d}\red{:-}}}}}}

  • Length of the String (AC) = ?

{\bold{\huge{\pink{\underline{\red{So}\purple{lut}\green{ion}\orange{:-}}}}}}

In ∆ ABC

\bf\dfrac{AB}{AC}=\dfrac{P}{H}=\:Sin\:60\degree

\bf\implies\dfrac{75}{AC}=\dfrac{\sqrt{3}}{2}

\bf\implies\:AC\:\sqrt{3}=150

\bf\implies\:AC=\dfrac{150}{\sqrt{3}}\times\dfrac{\sqrt{3}}{\sqrt{3}}

\bf\implies\:AC=\dfrac{150\sqrt{3}}{3}

\bf\implies\:AC=50\sqrt{3}\:m

\bf\implies\:AC=50\times\:1.732

\bf\implies\:AC=86.6\:m

Hence, the length of the String is 86.6 m

Attachments:
Answered by DynamicB0Y
9

Given :

  • Height of kite = 75 m

  • Angle of  \theta = 60°

To Find :

  • Length of string

Solution :

  • Let's the height of kite is perpendicular height of triangle and string be the hypothenuse of triangle with theta 60°

By Using

 \boxed{ \boxed{ \sf \large \sin \theta =   \dfrac{p}{h}}}

Substitute value in formula

 \sf \implies \sin60 =  \frac{75}{h} \\  \\ \sf \implies  \frac{ \sqrt{3} }{2}   =  \frac{75}{h}  \\  \\ \sf \implies \sqrt{3} h = 150 \\  \\ \sf \implies h =  \frac{150}{ \sqrt{3} }

By rationalisation of denominator

\sf \implies h =  \frac{150}{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} }  \\  \\ \sf \implies h =  \frac{150 \sqrt{3} }{3}  \\  \\\sf \implies h = 50 \sqrt{3} \\ \\  \implies \large \boxed{ \boxed{ \sf  h =86.6\:m} }

Similar questions