(1) A line cuts two sides AB and AC of ABC in points P and
then,
(a) Draw seg BQ and write ALAPO)
AC LABO)
(b) Write ALL ABO)
ACAABC)
(c) Multiply the result obtained in (a) and (b)
and prove LAAPQ) AP X AQ
АС ДАВС) AB x AC
nº consider BAC
Answers
SOLUTION :
Given : In ∆ABC, in which ∠A is obtuse, PB ⊥ AC and QC ⊥ AB.
In ∆APB and ∆AQC
∠P = ∠Q (each 90°)
∠PAB = ∠QAC (vertically opposite angle)
∆APB ~ ∆AQC
[By AA similarity]
∴ AP/AQ = AB/AC
[Corresponding parts of similar ∆ are proportional]
AP × AC = AQ × AB ………..(1)
(ii) In ∆BPA ,
AB² = BP² + PA²
[By using Pythagoras theorem]
BP² = AB² - AP² ………….(2)
In ∆BPC, by pythagoras theorem
BC² = BP² + PC²
[By using Pythagoras theorem]
BC² = AB² - AP² +(AP+ AC)²
[From eq 2]
BC² = AB² - AP² + AP² + AC² +2AP×AC
[(a+b)² = a² + b² +2ab]
BC² = AB² + AC² +2AP×AC …………(3)
In ∆AQC,
AC² = AQ² + QC²
[By using Pythagoras theorem]
QC² = AC² - AQ² …………..(4)
In ∆BQC,
BC² = CQ² + BQ²
[By using Pythagoras theorem]
BC² = AC² - AQ² + (AB + AQ)²
[From eq 4]
BC² = AC² - AQ² + AB² + AQ² + 2AB×AQ
[(a+b)² = a² + b² +2ab]
BC² = AC² + AB² + 2AB×AQ …………(5)
On Adding eq 3 & 5
BC² = AB² + AC² +2AP×AC
BC² = AC² + AB² + 2AB×AQ
-----------------------------------------
2BC² = 2AC² +2AB² +2AP×AC + 2AB×AQ
2BC² = 2AC² +2AP×AC + +2AB² +2AB×AQ
2BC² = 2AC[AC+ AP] + 2AB[AB + AQ]
2BC² = 2AC × PC + 2AB × BQ
[PC = AC +AP & BQ = AB + AQ]
2BC² = 2(AC × PC + AB × BQ)
BC² = (AC × PC + AB × BQ) [Divide by 2 ]