1. A piece of a broken plate was dug up in an archaeological site. It was put on top of a grid with the arc of the plate passing through A( 7,0), B(1,4) and C(7,2). Find its center, and the standard equation of the circle 2 describing the boundary of the plate.
Answers
Answer:
The standard equation of the circle with center O(a,b)O(a,b) and radius RR is the following:
(x-a)^2+(y-b)^2=R^2(x−a)
2
+(y−b)
2
=R
2
,
where R>0.R>0.
Since the arc of the plate (the circle) passing through A(7,0), B(1,4)A(7,0),B(1,4) and C(7,2)C(7,2), we have the following system:
\begin{cases}(7-a)^2+b^2=R^2\\(1-a)^2+(4-b)^2=R^2\\(7-a)^2+(2-b)^2=R^2\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
(7−a)
2
+b
2
=R
2
(1−a)
2
+(4−b)
2
=R
2
(7−a)
2
+(2−b)
2
=R
2
which is equivalent to
\begin{cases}(7-a)^2+b^2=R^2\\(1-a)^2+(4-b)^2=R^2\\(2-b)^2-b^2=0\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
(7−a)
2
+b
2
=R
2
(1−a)
2
+(4−b)
2
=R
2
(2−b)
2
−b
2
=0
\begin{cases}(7-a)^2+b^2=R^2\\(1-a)^2+(4-b)^2=R^2\\4-4b+b^2-b^2=0\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
(7−a)
2
+b
2
=R
2
(1−a)
2
+(4−b)
2
=R
2
4−4b+b
2
−b
2
=0
\begin{cases}(7-a)^2+b^2=R^2\\(1-a)^2+(4-b)^2=R^2\\b=1\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
(7−a)
2
+b
2
=R
2
(1−a)
2
+(4−b)
2
=R
2
b=1
\begin{cases}(7-a)^2+1=R^2\\(1-a)^2+9=R^2\\b=1\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
(7−a)
2
+1=R
2
(1−a)
2
+9=R
2
b=1
\begin{cases}(7-a)^2-(1-a)^2-8=0\\(1-a)^2+9=R^2\\b=1\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
(7−a)
2
−(1−a)
2
−8=0
(1−a)
2
+9=R
2
b=1
\begin{cases}a^2-14a+49-1+2a-a^2-8=0\\(1-a)^2+9=R^2\\b=1\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
a
2
−14a+49−1+2a−a
2
−8=0
(1−a)
2
+9=R
2
b=1
\begin{cases}-12a+40=0\\(1-a)^2+9=R^2\\b=1\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
−12a+40=0
(1−a)
2
+9=R
2
b=1
\begin{cases}a=\frac{10}{3}\\(1-a)^2+9=R^2\\b=1\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
a=
3
10
(1−a)
2
+9=R
2
b=1
\begin{cases}a=\frac{10}{3}\\(-\frac{7}{3})^2+9=R^2\\b=1\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
a=
3
10
(−
3
7
)
2
+9=R
2
b=1
\begin{cases}a=\frac{10}{3}\\\frac{130}{9}=R^2\\b=1\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
a=
3
10
9
130
=R
2
b=1
\begin{cases}a=\frac{10}{3}\\R=\frac{\sqrt{130}}{3}\\b=1\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
a=
3
10
R=
3
130
b=1
The center of the circle (plate) is O(\frac{10}{3},1)O(
3
10
,1) and the standard equation of the circle describing the boundary of the plate is the following:
(x-\frac{10}{3})^2+(y-1)^2=\frac{130}{9}.(x−
3
10
)
2
+(y−1)
2
=
9
130
.
The standard equation of the circle with center O(a,b)O(a,b) and radius RR is the following:
(x-a)^2+(y-b)^2=R^2(x−a)
2
+(y−b)
2
=R
2
,
where R>0.R>0.
Since the arc of the plate (the circle) passing through A(7,0), B(1,4)A(7,0),B(1,4) and C(7,2)C(7,2), we have the following system:
\begin{cases}(7-a)^2+b^2=R^2\\(1-a)^2+(4-b)^2=R^2\\(7-a)^2+(2-b)^2=R^2\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
(7−a)
2
+b
2
=R
2
(1−a)
2
+(4−b)
2
=R
2
(7−a)
2
+(2−b)
2
=R
2
which is equivalent to
\begin{cases}(7-a)^2+b^2=R^2\\(1-a)^2+(4-b)^2=R^2\\(2-b)^2-b^2=0\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
(7−a)
2
+b
2
=R
2
(1−a)
2
+(4−b)
2
=R
2
(2−b)
2
−b
2
=0
\begin{cases}(7-a)^2+b^2=R^2\\(1-a)^2+(4-b)^2=R^2\\4-4b+b^2-b^2=0\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
(7−a)
2
+b
2
=R
2
(1−a)
2
+(4−b)
2
=R
2
4−4b+b
2
−b
2
=0
\begin{cases}(7-a)^2+b^2=R^2\\(1-a)^2+(4-b)^2=R^2\\b=1\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
(7−a)
2
+b
2
=R
2
(1−a)
2
+(4−b)
2
=R
2
b=1
\begin{cases}(7-a)^2+1=R^2\\(1-a)^2+9=R^2\\b=1\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
(7−a)
2
+1=R
2
(1−a)
2
+9=R
2
b=1
\begin{cases}(7-a)^2-(1-a)^2-8=0\\(1-a)^2+9=R^2\\b=1\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
(7−a)
2
−(1−a)
2
−8=0
(1−a)
2
+9=R
2
b=1
\begin{cases}a^2-14a+49-1+2a-a^2-8=0\\(1-a)^2+9=R^2\\b=1\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
a
2
−14a+49−1+2a−a
2
−8=0
(1−a)
2
+9=R
2
b=1
\begin{cases}-12a+40=0\\(1-a)^2+9=R^2\\b=1\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
−12a+40=0
(1−a)
2
+9=R
2
b=1
\begin{cases}a=\frac{10}{3}\\(1-a)^2+9=R^2\\b=1\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
a=
3
10
(1−a)
2
+9=R
2
b=1
\begin{cases}a=\frac{10}{3}\\(-\frac{7}{3})^2+9=R^2\\b=1\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
a=
3
10
(−
3
7
)
2
+9=R
2
b=1
\begin{cases}a=\frac{10}{3}\\\frac{130}{9}=R^2\\b=1\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
a=
3
10
9
130
=R
2
b=1
\begin{cases}a=\frac{10}{3}\\R=\frac{\sqrt{130}}{3}\\b=1\end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
a=
3
10
R=
3
130
b=1
The center of the circle (plate) is O(\frac{10}{3},1)O(
3
10
,1) and the standard equation of the circle describing the boundary of the plate is the following:
(x-\frac{10}{3})^2+(y-1)^2=\frac{130}{9}.(x−
3
10
)
2
+(y−1)
2
=
9
130
.
Mark me as briliant
Given:
Arc of the circular plate goes through A(7, 0), B(1, 4), and C(7, 2).
To find:
Center of the circle and general equation of the circle.
Solution:
Standard equation of a circle whose radius R>0 and center O(a, b) is
Since the arc of the plate goes through A(7, 0), B(1, 4), and C(7, 2), we can write,
-(i)
-(ii)
-(iii)
From (i) we have,
Putting this value in (iii),
⇒
Now, putting the value of b in (ii), we get,
⇒
We can put this value of and b in (ii),
⇒
⇒
⇒
Putting the value of in (ii), we get,
⇒
Hence, the center of the circle is O and the general equation representing the boundary of the plate is .