Physics, asked by samsunniharbegum1973, 11 months ago

1. A spherical mass of 20 kg lying on the surface of
the earth is attracted by another spherical mass of
150 kg with a force equal to the weight of 0.25 mg.
The centres of the two masses are 30 cm apart.
Calculate the mass of the earth. Radius of the earth
= 6 x 10^6m.

Answers

Answered by VishnuPriya2801
21

Answer:

5.289 \times  {10}^{24} kg

Explanation:

Given:

 m_{1} = 20 \: kg \\  \\   m_2 = 150 \: kg \\  \\

F = 0.25 mg

 = 0.25 \times  {10}^{ - 6}  \\ (1mg \:  =  {10}^{ - 6} kg)

r = 30 cm

F = m×g

 =  \frac{30}{100}  \: m \\  \\  =  {10}^{ - 1} m

We know that,

F \:  = \:  \frac{G. m_1 .m_2 }{ {r}^{2} }  \\  \\ G =  \frac{f {r}^{2} }{ m_1 . m_2 }  \\  \\  =  \frac{0.25 \times   {10}^{ - 6} \times 9.8 \times  {10}^{ - 1}  \times  {10}^{ - 1} }{20 \times 150}  \\  \\ G  =  6.67 \times  {10}^{ - 11} N. {m}^{2} .kg {}^{ - 2}

Now , by using the formula of g (acceleration due to gravity)

g \:  =  \frac{GM}{ {R}^{2} }  \\

Where G = Gravitational constant,

M = mass of the earth

R = radius of the earth.

Here , we know the value of "g'' on the earth, i.e.9.8 m/s ².

9.8 =  \frac{6.67 \times  {10}^{ - 11} \times M  }{(6 \times  {10}^{6}) {}^{2} }  \\  \\  9.8 =  \frac{6.67 \times  {10 }^{ - 11}  \times M}{36 \times  {10}^{12} }  \\  \\ 9.8 \times 36 \times  {10}^{12}  \:  = 6.67 \times  {10}^{ - 11}  \times M \\  \\  \frac{9.8 \times 36 \times  {10}^{12} }{6.67 \times  {10}^{ - 11}  }  = M \\  \\  M \:  = 5.289 \times  {10}^{24} kg.

Answered by rohailmulla
0

m1=20Kg

m2=150kg

0.25mg=o.25x10^-6

r=0.30m

F=mxg

Similar questions
Math, 5 months ago