1 added to the product of two consecutive odd numbers givrn 576. What are the number
Answers
Answer:
The required two numbers can be either -23 and -25 or 23 and 25
Step-by-step explanation:
Given :
1 added to the product of two consecutive odd numbers gives 576.
To find :
the numbers
Solution :
Let the two consecutive odd numbers be (2x + 1) and (2x + 3)
First, let's find the product of the two numbers.
⇒ (2x + 1) (2x + 3)
⇒ 2x(2x + 3) + 1(2x + 3)
⇒ 4x² + 6x + 2x + 3
⇒ 4x² + 8x + 3
Now, 1 added to the product gives 576.
⇒ 4x² + 8x + 3 + 1 = 576
⇒ 4x² + 8x + 4 = 576
⇒ 4x² + 8x = 576 - 4
⇒ 4x² + 8x - 572 = 0
⇒ 4(x² + 2x - 143) = 0
⇒ x² + 2x - 143 = 0
Solving the quadratic equation,
⇒ x² + 13x - 11x - 143 = 0
⇒ x(x + 13) - 11(x + 13) = 0
⇒ (x + 13) (x - 11) = 0
⇒ x + 13 = 0 ; x = -13
⇒ x - 11 = 0 ; x = +11
If x = -13,
2x + 1 = 2(-13) + 1 = -26 + 1 = -25
2x + 3 = 2(-13) + 3 = -23
⇒ The two numbers are -25 and -23
If x = +11,
2x + 1 = 2(11) + 1 = 23
2x + 3 = 2(11) + 3 = 25
⇒ The two numbers are 23 and 25