Math, asked by Saryupatle89, 3 months ago

1. Calculate the compound interest on 10,000 for 2 years at 7% p.a.
2. Calculate the compound interest on 15,000 for 2 years at 6% p.a.
3. Calculate the amount and the compound interest on 8000 for 3 years at 15% p.a., interest
compounded annually.
4. Harish invests * 12,500 for 2 years at 12% p.a., calculate the amount and the compound interest
that Harish will get after 2 years.
5. Mahesh invests 3000 for 3 years at the rate of 10% p.a. compound interest. Find the amount and
the compound interest that Ramesh will get after 3 years.​

Answers

Answered by Atlas99
25

Solution 1

Given

  • Principal = ₹10000.
  • Time = 2 years.
  • Rate = 7% p.a.

To Find

  • Compound Interest.

Solution

A = P(1+ R/100)^n

⇒ A = 10000(1+ 7/100)^n

⇒ A = 10000(107/100)²

⇒ A = 10000 × 107/100 × 107/100

⇒ A = 107 × 107

∴ Amount = ₹11449.

C.I. = A - P

⇒ C.I. = 11449 - 10000

Compound Interest = ₹1449.

Final Answer

  • Compound Interest = ₹1449.

----------------------------------------------------------

Solution 2

Given

  • Principal = ₹15000.
  • Time = 2 years.
  • Rate = 6% p.a.

To Find

  • Compound Interest.

Solution

A = P(1+ R/100)^n

⇒ A = 15000(1+ 6/100)²

⇒ A = 15000(1+ 3/50)²

⇒ A = 15000(53/50)²

⇒ A = 15000 × 53/50 × 53/50

⇒ A = 6 × 53 × 53

∴ Amount = ₹16854.

C.I. = A - P

⇒ C.I. = 16854 - 15000

Compound Interest = ₹1854.

Final Answer

  • Compound Interest = ₹1854.

----------------------------------------------------------

Solution 3

Given

  • Principal = ₹8000.
  • Time = 3 years.
  • Rate = 15% p.a.

To Find

  • Amount.
  • Compound Interest.

Solution

A = P(1+ R/100)^n

⇒ A = 8000(1+ 15/100)³

⇒ A = 8000(1+ 3/20)³

⇒ A = 8000(23/20)³

⇒ A = 8000 × 23/20 × 23/20 × 23/20

⇒ A = 23 × 23 × 23

Amount = ₹12167.

C.I. = A - P

⇒ C.I. = 12167 - 8000

Compound Interest = ₹4167.

Final Answer

  • Amount = ₹12167.
  • Compound Interest = ₹4167.

----------------------------------------------------------

Solution 4

Given

  • Principal = ₹12500.
  • Time = 2 years.
  • Rate = 12% p.a.

To Find

  • Amount.
  • Compound Interest.

Solution

A = P(1+ R/100)^n

⇒ A = 12500(1+ 12/100)²

⇒ A = 12500(1+ 3/25)²

⇒ A = 12500(28/25)²

⇒ A = 12500 × 28/25 × 28/25

⇒ A = 20 × 28 × 28

Amount = 15680.

C.I. = A - P

⇒ C.I. = 15680 - 12500

Compound Interest = ₹3180.

Final Answer

  • Amount = ₹15680.
  • Compound Interest = ₹3180.

----------------------------------------------------------

Solution 5

Given

  • Principal = ₹3000.
  • Time = 3 years.
  • Rate = 10% p.a.

To Find

  • Amount.
  • Compound Interest.

Solution

A = P(1+ R/100)^n

⇒ A = 3000(1+ 10/100)³

⇒ A = 3000(1+ 1/10)³

⇒ A = 3000(11/10)³

⇒ A = 3000 × 11/10 × 11/10 × 11/10

⇒ A = 3 × 11 × 11 × 11

Amount = 3993.

C.I. = A - P

⇒ C.I. = 3993 - 3000

Compound Interest = ₹993.

Final Answer

  • Amount = ₹3993.
  • Compound Interest = ₹993.

__________________________________

Answered by OoAryanKingoO78
11

Question ¹

GiveN:-

  • Principal = Rs.10000
  • Rate = 7% per annum
  • Time = 2 years

To FinD:-

  • The Compound Interest.

SolutioN:-

We know that,

\large{\pink{\underline{\boxed{\bf{Amount=P\left(1+\dfrac{R}{100}\right)^n}}}}}

where,

P is principal = Rs.10000

R is rate = 7%

n is time = 2 years

Putting the values,

\sf :\implies{Amount = 10000 (1  +  \dfrac{7}{100})^2 }

\sf :\implies{Amount = 10000 ( \dfrac{100 + 7}{100})^2 }

\sf :\implies{Amount = 10000 ×  (\dfrac{107}{100})^2 }

\sf :\implies{Amount = 10000 × (\dfrac{107}{100} × \dfrac{107}{100}) }

\sf :\implies{Amount = 10000 ×\dfrac{107}{100}\dfrac{107}{100} }

\sf :\implies{Amount = 1\cancel{00}\cancel{00} \dfrac{107}{\cancel{100}} × \dfrac{107}{\cancel{100}}}

\sf :\implies{Amount = 1 × 107 × 107 }

\sf\color{lime}\fbox{\bf\color{purple}{Amount = 11,449.}}

Now,

We know that,

\large{\pink{\underline{\boxed{\bf{Compound\:Interest=Amount-Principal}}}}}

where,

Amount = Rs.11,449

Principal = Rs.10000

Putting the values,

\sf :\implies{Compound \: Interest = Rs,(11,449 - 10, 000)}

\sf\color{lime}\fbox{\bf\color{purple}{Compound \: Interest = 1,449.}}

The Compound Interest is Rs.1,449

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Question ²

GiveN:

Calculate the compound interest on ` 15,000 for 2 years at 6% p.a.

SolutioN:

We Know that,

\rm{A = P(1 + \dfrac{r}{100})ⁿ}

Here, A is the amount after n year at a rate of r\% on a principal P

:\implies\sf { A = 15000(1 + \dfrac{6}{100})²}

:\implies\sf {A = 15000(\cancel{\dfrac{53}{50}}) × (\cancel{\dfrac{53}{50}})}

:\implies\sf {A = 6 × 53 × 53  }

:\implies\sf { A = Rs.16,854 }

We know,

\large{\pink{\underline{\boxed{\bf{Compound\:Interest=Amount-Principal}}}}}

\sf :\implies{Compound \: Interest = Rs,(16,854 - 15, 000)}

\sf\color{lime}\fbox{\bf\color{purple}{Compound \: Interest = Rs.854.}}

The Compound Interest is Rs.854

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Question ³

GiveN:-

  • Principal = ₹8000.
  • Time = 3 years.
  • Rate = 15% p.a.

To FinD:-

  • Amount.
  • Compound Interest.

SolutioN-

\sf{A = P(1 + \dfrac{r}{100})ⁿ}

\sf :\implies{A = 8000(1 + \dfrac{15}{100})³ }

\sf :\implies{ A = 8000(1 + \dfrac{3}{20})³}

\sf :\implies{A = 8000(\dfrac{23}{20})³ }

\sf :\implies{A = 8\cancel{000} × \dfrac{23}{\cancel{20}} × \dfrac{23}{\cancel{20}} × \dfrac{23}{\cancel{20}} }

\sf :\implies{A = 23× 23 × 23}

\sf\color{lime}\fbox{\bf\color{purple}{Rs. 12,161.}}

The Amount is Rs.12,161

We know,

\large{\pink{\underline{\boxed{\bf{Compound\:Interest=Amount-Principal}}}}}

\sf :\implies{Compound \: Interest = Rs,(12,167 - 8,000)}

\sf\color{lime}\fbox{\bf\color{purple}{Compound \: Interest = Rs.4,167}}

The Compound Intrest is Rs, 4,167.

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Question

GiveN:-

  • Principal = ₹12500.
  • Time = 2 years.
  • Rate = 12% p.a.

To FinD:-

  • Amount.
  • Compound Interest.

SolutioN:-

\sf{A = P(1+ \dfrac{r}{100})^n}

\sf :\implies{A = 12500(1 + \dfrac{12}{100})² }

\sf :\implies{A = 12500(1 + \dfrac{3}{25})^2}

\sf :\implies{ A = 12500(\dfrac{28}{25})²}

\sf :\implies{A = 125\cancel{00} × \dfrac{28}{\cancel{25}} × \dfrac{28}{\cancel{25}} }

\sf :\implies{A = 20 × 28 × 28 }

\sf\color{lime}\fbox{\bf\color{purple}{Rs.15,680}}

The Amount is Rs.15,680

We know,

\large{\pink{\underline{\boxed{\bf{Compound\:Interest=Amount-Principal}}}}}

\sf :\implies{Compound \: Interest = Rs,(15,680 - 12,500)}

\sf\color{lime}\fbox{\bf\color{purple}{Compound \: Interest = Rs.3180}}

The Compund Interest is Rs.3180

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Question

GiveN:-

  • Principal = ₹3000.
  • Time = 3 years.
  • Rate = 10% p.a.

To FinD:-

  • Amount.
  • Compound Interest.

SolutioN:-

\sf{A = P(1+ \dfrac{r}{100})^n}

\sf :\implies{A = 3000(1 + \dfrac{10}{100})³ }

\sf :\implies{A = 3000(1 + \dfrac{1}{10})³ }

\sf :\implies{A = 3000(\dfrac{11}{10})³ }

\sf :\implies{A = 3\cancel{000} × \dfrac{11}{\cancel{10}} × \dfrac{11}{\cancel{10}} × \dfrac{11}{\cancel{10}}}

\sf :\implies{A = 3 × 11 × 11 × 11 }

\sf\color{lime}\fbox{\bf\color{purple}{Rs.3,993}}

The Amount is Rs.3,993.

We Know,

\large{\pink{\underline{\boxed{\bf{Compound\:Interest=Amount-Principal}}}}}

\sf :\implies{Compound \: Interest = Rs,(3,993 - 3,000)}

\sf\color{lime}\fbox{\bf\color{purple}{Compound \: Interest = Rs.993}}

The Compund Interest is Rs.993.

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

HOPES IT HELPS!:)

Similar questions