Science, asked by rathika726, 5 months ago


1.Certain force acting on a 50 kg mass changes its velocity from 10 m/s to 5 m/s. Calculate the work done by the force. *

Answers

Answered by maanprakashpatel
2

Answer:

250N this is the answer

Answered by INSIDI0US
197

Explanation:

\frak {Given} \begin{cases} &\sf{Mass\ of\ the\ body,\ m\ =\ 50kg.} \\ &\sf{Initial\ velocity,\ u\ =\ 10m/s.} \\ &\sf{Final\ velocity,\ v\ =\ 5m/s.} \end{cases}

To find:- We have to find the work done by the force ?

☯️ Work done = Change in kinetic energy.

__________________

 \frak{\underline{\underline{\dag As\ we\ know\ that:-}}}

 \sf : \implies {Initial_{(kinetic\ energy)}\ =\ \dfrac{1}{2}\ mu^2.}

Here:-

  • m, is for mass.
  • u, is for initial velocity.

__________________

 \frak{\underline{\underline{\dag By\ substituting\ the\ values,\ we\ get:-}}}

 \sf : \implies {\dfrac{1}{2}\ mu^2} \\ \\ \\ \sf : \implies {\dfrac{1}{\cancel 2}\ \times\ \cancel {50}\ \times\ 10^2} \\ \\ \\ \sf : \implies {25\ \times\ 100} \\ \\ \\ \sf : \implies {\pink{\underline{\boxed{\bf 2500J.}}}}\bigstar

__________________

 \frak{\underline{\underline{\dag As\ we\ know\ that:-}}}

 \sf : \implies {Final_{(kinetic\ energy)}\ =\ \dfrac{1}{2}\ mv^2.}

Here:-

  • m, is for mass.
  • v, is for final velocity.

__________________

 \frak{\underline{\underline{\dag By\ substituting\ the\ values,\ we\ get:-}}}

 \sf : \implies {\dfrac{1}{2}\ mv^2} \\ \\ \\ \sf : \implies {\dfrac{1}{\cancel 2}\ \times\ \cancel {50}\ \times\ 5^2} \\ \\ \\ \sf : \implies {25\ \times\ 25} \\ \\ \\ \sf : \implies {\pink{\underline{\boxed{\bf 625J.}}}}\bigstar

__________________

 \frak{\underline{\underline{\dag As\ we\ know\ that:-}}}

 \sf : \implies {Work\ done\ =\ Change\ in\ kinetic\ energy.}

__________________

 \frak{\underline{\underline{\dag By\ substituting\ the\ values,\ we\ get:-}}}

 \sf : \implies {Work\ done\ =\ Change\ in\ kinetic\ energy} \\ \\ \\ \sf : \implies {Final\ kinetic\ energy\ -\ Initial\ kinetic\ energy} \\ \\ \\ \sf : \implies {625\ -\ 2500} \\ \\ \\ \sf : \implies {\purple{\underline{\boxed{\bf -1875J.}}}}\bigstar

Hence:-

 \sf \therefore {\underline{The\ work\ done\ by\ the\ force\ is\ -1875J.}}


HA7SH: Excellent answer : D
Similar questions