Math, asked by annny7560, 1 year ago

✓1+cos/1-cos + ✓1-cos/1+cos

Answers

Answered by harsh9889
1
cos=2



right answer it is

satishatbcdp9vp8p: 2cosec theta is the right answer
Answered by fab13
1

Answer:

 \frac{ \sqrt{1 +  \cos \alpha } }{1 -  \cos \alpha  }  +  \frac{ \sqrt{1 -  \cos \alpha } }{1 +  \cos \alpha  }  \\  =  \frac{ \sqrt{1 +  \cos \alpha  } (1 +  \cos \alpha ) +  \sqrt{1 -  \cos \alpha }  (1 -  \cos \alpha  }{(1 -  \cos \alpha )(1 +  \cos \alpha ) }  \\  =  \frac{ \sqrt{1 +  \cos \alpha }  \sqrt{(1 +  \cos \alpha ) {}^{2} }  +  \sqrt{1  -  \cos \alpha }  \sqrt{(1 -  \cos{ \alpha })^{2}   } }{1 -  \cos^{2}  \alpha  } \\  =  \frac{ \sqrt{(1 +  \cos \alpha ) (1 +  \cos \alpha )  {}^{2}  }  +  \sqrt{(1 -  \cos\alpha )(1 -  \cos \alpha ) {}^{2}   } }{1 -  \cos{}^{2}  \alpha  }  \\  =  \frac{ \sqrt{(1 +  \cos \alpha ) {}^{3}   }  +  \sqrt{(1 -  \cos{ \alpha })^{3}  } }{1 -  \cos {}^{2}  \alpha  }  \\  =   \frac{(1 +  \cos \alpha )  {}^{ \frac{3}{2} }  + (1 -  \cos \alpha ) {}^{ \frac{3}{2} }  }{1 -  \cos {}^{2}  \alpha  }  \\

Similar questions