Math, asked by Sooryakant, 1 year ago

1: cos 18° - sin 18° = root 2sin 27° ​

Answers

Answered by sonuojha211
0

Answer:

It has been proved that:

cos18\°-sin18\°=\sqrt 2\,sin27\°

Step-by-step explanation:

L.H.S

cos18\°-sin18\°

=cos18\°-cos(90\°-72\°)

=cos18\°-cos72\°

Here we are using the formula of cosC-cosD.

cosC-cosD=-2sin(\dfrac{C+D}{2})sin(\dfrac{C-D}{2})

cos18\°-cos72\°=-2sin(\dfrac{18+72}{2})sin(\dfrac{18-72}{2})

                               =-2sin45\°\,sin(-27\°)

As we know:

sin(-x)=-sinx

Therefore:

=-2\cdot \dfrac{1}{\sqrt 2}(-sin27\°)

=\dfrac{\sqrt 2\codt \sqrt 2}{\sqrt 2}sin(27\°)

=\sqrt 2 sin(27\°)

=R.H.S

Similar questions