Math, asked by sayantanibhowal87530, 3 months ago

1-cos 2ø÷sin 2ø= tan ø. prove​

Answers

Answered by mathdude500
7

To Prove :-

\rm :\longmapsto\:  \:\:  \:\dfrac{1 - cos2 \phi \: }{sin2\phi \:}  = tan\phi \:

\large\underline{\sf{Solution-}}

Consider LHS,

\rm :\longmapsto\:  \:\:  \:\dfrac{1 - cos2 \phi \: }{sin2\phi \:}

We know,

\boxed{ \red{ \bf \: 1 - cos2x =  {2sin}^{2} x}}

and

\boxed{ \red{ \bf \:sin2x = 2sinx \: cosx}}

On substituting these values, we get

\rm :\longmapsto\:  \: =  \:  \:\dfrac{ {2sin}^{2}\phi \: }{2sin\phi \: \: cos\phi \:}

\rm :\longmapsto\:  \: =  \:  \:\dfrac{sin\phi \:}{cos\phi \:}

\rm :\longmapsto\:  \: =  \:  \:tan\phi \:

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

\boxed{ \red{ \bf \: cos2x =  {2cos}^{2} x - 1}}

\boxed{ \red{ \bf \: cos2x = 1 -  {2sin}^{2} x }}

\boxed{ \red{ \bf \: cos2x =  {cos}^{2} x -  {sin}^{2} x }}

\boxed{ \red{ \bf \: tan2x = \dfrac{2tanx}{1 -  {tan}^{2}x }}}

\boxed{ \red{ \bf \: sin2x = \dfrac{2tanx}{1  +   {tan}^{2}x }}}

\boxed{ \red{ \bf \: 1 + cos2x =  {2cos}^{2} x}}

\boxed{ \red{ \bf \: 1  -  cos2x =  {2sin}^{2} x}}

Similar questions