Math, asked by harshjeswani321, 11 months ago

√1-cos A/ 1+ cos A = sinA/1+cosA​

Answers

Answered by soham4net
2

Step-by-step explanation:

Show that;       \sqrt{\frac{1-CosA}{1+CosA} } =\frac{SinA}{1+CosA}

First to prove the following we need to multiply and divide \sqrt{1+CosA} with \sqrt{\frac{1-CosA}{1+CosA} }

That implies;   \sqrt{\frac{(1-CosA)(1+CosA)}{(1+CosA)(1+CosA)} }

                   =\sqrt{\frac{1-Cos^2A}{(1+CosA)^2} }      We know that: 1-Cos^2A=Sin^2A

                  =\sqrt{\frac{Sin^2A}{(1+Cos^2A)} }

                  =\frac{SinA}{1+CosA}

Hence Proved;

Answered by sandy1816
0

LHS

 =  \sqrt{ \frac{1 - cosA}{1 + cosA} }  \\ \\   =  \sqrt{ \frac{1 - cosA}{1 + cosA} \times  \frac{1  + cosA}{1 + cosA}  }  \\  \\  =  \sqrt{ \frac{1 -  {cos}^{2}A }{( {1  + cosA})^{2} } }  \\  \\  =  \sqrt{ \frac{ {sin}^{2} A}{( {1 + cosA})^{2} } }  \\  \\   = \frac{sinA}{1 + cosA}

RHS

Similar questions
Math, 5 months ago