Math, asked by kshivacharanreddy900, 2 months ago

1-cos theta / 1+cos theta​

Answers

Answered by sandy1816
0

 \large Method \: 1  \\ \frac{1 - cos \theta}{1 + cos \theta}  \\  =  \frac{2 {sin}^{2} \frac{ \theta}{2}  }{2 {cos}^{2}  \frac{ \theta}{2} }  \\  =  {tan}^{2}  \frac{ \theta}{2}  \\ \large Method \: 2 \\  \frac{1 - cos \theta}{1 + cos \theta}  \\  by \: rationalizing \: denominator \\  \frac{( {1 - cos \theta})^{2} }{1 -  {cos}^{2} \theta }  \\  =  \frac{( {1 - cos \theta})^{2} }{ {sin}^{2} \theta}  \\  = ( \frac{1 - cos \theta}{sin \theta} ) ^{2}  \\  = ( {cosec \theta - cot \theta})^{2}

Similar questions