Math, asked by gamerultimate293, 7 months ago

1+cos theta/1-cos theta=(cosec theta +cot theta) ²​

Answers

Answered by BeStMaGiCiAn14
12

Answer:

Please refer the image,

Step-by-step explanation:

Attachments:
Answered by visalavlm
7

Answer:

1+cosθ/1-cosθ is equal to  (cosecθ + cotθ)

Step-by-step explanation:

Given that 1+cosθ/1-cosθ

We have to prove that 1+cosθ/1-cosθ = (cosecθ + cotθ)

Take L.H.S

Let θ = α

1+cosα/1-cosα = ( cosecα +cotα)

LHS = \frac{1+cos\alpha }{1-cos\alpha } = \frac{1+cos\alpha }{1-cos\alpha } *\frac{1+cos\alpha }{1+cos\alpha }

            =\frac{(1+cos\alpha )^{2} }{1^{2} -cos^{2}\alpha  }

sin²α +cos²α = 1

1 - cos²α = sin²α

\frac{1+cos\alpha }{1-cos\alpha } =  \frac{(1+cos\alpha )^{2} }{1^{2} -cos^{2}\alpha  }

          = \frac{(1+cos\alpha )^{2} }{sin^2{\alpha } }

        =  (\frac{1+cos\alpha }{sin\alpha } )^{2}

        = (\frac{1}{sin\alpha } +\frac{cos\alpha }{sin\alpha } )^{2}

        = (cosecα + cotα)² = RHS

∴LHS = RHS

Therefore,  1+cosθ/1-cosθ = (cosecθ + cotθ)

Hence proved.

Similar questions