1+cos theta+sin theta/1+costheta-sintheta=1+sintheta/costheta
Answers
Answered by
156
Answer:
L.H.S.
R.H.S.
Hence, proved.
Answered by
6
Hence proved that
1 + cos θ + sinθ/1 + cosθ - sinθ = 1 + sinθ/cosθ
Explanation:
Given,
L.H.S. = 1 + cos θ + sinθ/1 + cosθ - sinθ
Multiplying the numerator and denominator by (1 + sin θ)
= {(1 + cos θ + sin θ} {(1 + + sin θ)}/{(1 + cos θ - sin θ)} {1 + sin θ}
= {1 + cos θ + sin θ} {(1 + + sin θ)}/{1 + cos θ) - sinθ + sinθ + sinθcosθ - sin^2 θ}
= (1 + cosθ + sinθ) (1 + sin θ)/(cos^2 θ + cosθ + sinθ cos θ)
= (1 + cosθ + sinθ) (1 + sinθ)/ cos θ (cosθ + 1 + sinθ)
= 1 + sinθ/cosθ
= R.H.S.
Learn more: If cos θ+ sin θ=√2 cos θ, show that cos θ-sin θ=√2 sin θ
brainly.in/question/5422835
Similar questions