(1/cos theta + sin theta/cos theta) ( 1- sin theta/cos theta)
Answers
Answer:
1+cosθ+sinθ
=
cosθ
1+sinθ
L.H.S.
\frac{1+cos\theta + sin\theta}{1+cos\theta - sin\theta}
1+cosθ−sinθ
1+cosθ+sinθ
=\frac{1+cos\theta + sin\theta}{1+cos\theta - sin\theta}\times \frac{1+cos\theta + sin\theta}{1+cos\theta + sin\theta}=
1+cosθ−sinθ
1+cosθ+sinθ
×
1+cosθ+sinθ
1+cosθ+sinθ
=\frac{(1+cos\theta)^2+sin^2\theta + 2 sin\theta(1+cos\theta)}{1+cos^2\theta + 2cos\theta - sin^2 \theta}=
1+cos
2
θ+2cosθ−sin
2
θ
(1+cosθ)
2
+sin
2
θ+2sinθ(1+cosθ)
=\frac{1+cos^2\theta + 2 cos\theta + sin^2\theta + 2 sin\theta(1+cos\theta)}{1+cos^2\theta + 2cos \theta - 1 + cos^2 \theta}=
1+cos
2
θ+2cosθ−1+cos
2
θ
1+cos
2
θ+2cosθ+sin
2
θ+2sinθ(1+cosθ)
=\frac{1+1+2cos \theta + 2 sin \theta( 1+cos\theta)}{2cos^2\theta + 2 cos\theta}=
2cos
2
θ+2cosθ
1+1+2cosθ+2sinθ(1+cosθ)
(sin^2\theta + cos^2 \theta = 1)(sin
2
θ+cos
2
θ=1)
=\frac{2+2cos\theta + 2sin\theta cos\theta + 2 sin \theta}{2cos^2 \theta + 2 cos \theta }=
2cos
2
θ+2cosθ
2+2cosθ+2sinθcosθ+2sinθ
=\frac{2(1+cos\theta)+2sin \theta ( 1+ cos \theta)}{2cos \theta (cos \theta + 1)}=
2cosθ(cosθ+1)
2(1+cosθ)+2sinθ(1+cosθ)
=\frac{1+sin\theta }{cos \theta }=
cosθ
1+sinθ
R.H.S.