Math, asked by BrainlyHelper, 1 year ago

1/{cos (x - a)cos(x - b)}.dx"
Integrate the function

Answers

Answered by rohitkumargupta
18
HELLO DEAR,

GIVEN FUNCTION IS:- 1/{cos (x - a)cos(x - b)}.dx

now, \sf{\frac{1}{sin(a - b)}\int{[\frac{sin(a - b)}{cos(x - a)cos(x - b)}]}\,dx}

\sf{\Rightarrow \frac{1}{sin(a - b)}\int{[\frac{sin[(x - b) - (x - a)]}{cos(x - a)cos(x - b)}]}\,dx}

\sf{\Rightarrow \frac{1}{sin(a - b)}\int{\frac{sin(x - b)cos(x - a) - cos(x - b)sin(x - a)}{cos(x - a)cos(x - b)}}\,dx}

\sf{\Rightarrow \frac{1}{sin(a - b)}[\int{\tan(x - b) - tan(x - a)}\,dx]}

\sf{\Rightarrow \frac{1}{sin(a - b)}[-log|cos(x - b)| + log|cos(x - a)|]}

\sf{\Rightarrow \frac{1}{sin(a - b)}[log|\frac{cos(x - a)}{cos(x - b)}|] + c}

I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions