integral of [(sin²x - cos²x)/(sin²xcos²x)].dx is equal to
(A) tan x + cot x + C
(B) tan x + cosec x + C
(C) – tan x + cot x + C
(D) tanx + secx + C.
Answers
Answered by
6
integral of [(sin^2x/{sin^2x cos^2x}-cos^2x/{sin^2x cos^2x})]
integral of [(1/cos^2x)-(1/sin^2x)]dx
infegral of [(sec^2x)-(cosec^2x)]dx
tanx-(-cotx)+c
tanx+cotx+c
integral of [(1/cos^2x)-(1/sin^2x)]dx
infegral of [(sec^2x)-(cosec^2x)]dx
tanx-(-cotx)+c
tanx+cotx+c
Answered by
18
HELLO DEAR,
GIVEN FUNCTION IS:- [(sin²x - cos²x)/(sin²xcos²)].dx
now,
I HOPE ITS HELP YOU DEAR,
THANKS
GIVEN FUNCTION IS:- [(sin²x - cos²x)/(sin²xcos²)].dx
now,
I HOPE ITS HELP YOU DEAR,
THANKS
Anonymous:
mere answer mein kya problem thi
Similar questions