1 - cos2A/1 + sin2A = sin A
Answers
Answered by
0
Answer:
tanA
Step-by-step explanation:
Given:\frac{1-cos2A+sin2A}{1+cos2A+sin2A}Given:
1+cos2A+sin2A
1−cos2A+sin2A
∴ cos 2A = (1 - sin²A)
∴ cos 2A = 2 cos²A - 1
∴ sin 2A = 2 sin A cos A
=\frac{1-(1-2sin^2A)+2sinAcosA}{1+(2cos^2A-1)+2sinAcosA}=
1+(2cos
2
A−1)+2sinAcosA
1−(1−2sin
2
A)+2sinAcosA
=\frac{1-1+2sin^2A+2sinAcosA}{1+2cos^2A-1+2sinAcosA}=
1+2cos
2
A−1+2sinAcosA
1−1+2sin
2
A+2sinAcosA
=\frac{2sin^2A+2sinAcosA}{2cos^2A+2sinAcosA}=
2cos
2
A+2sinAcosA
2sin
2
A+2sinAcosA
=\frac{2sinA(sinA+cosA)}{2cosA(sinA+cosA)}=
2cosA(sinA+cosA)
2sinA(sinA+cosA)
=\frac{sinA}{cosA}=
cosA
sinA
=\boxed{tanA}=
tanA
Similar questions
Math,
17 days ago
English,
1 month ago
Math,
1 month ago
Social Sciences,
9 months ago
English,
9 months ago