Math, asked by ishanaggar41141, 1 month ago

1+cos2A=3cisAsinA...cotA=?

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

1+\cos(2A)=3\,\cos(A)\,\sin(A)

\implies2\cos^2(A)=3\,\cos(A)\,\sin(A)

\implies2\cos^2(A)-3\,\cos(A)\,\sin(A)=0

\implies\cos(A)\left\{2\,\cos(A)-3\,\sin(A)\right\}=0

\implies\cos(A)=0\,\,\,\,\,or\,\,\,\,\,2\,\cos(A)-3\,\sin(A)=0

\implies\cos(A)=0\,\,\,\,\,or\,\,\,\,\,2\,\cos(A)=3\,\sin(A)

\implies\cos(A)=0\,\,\,\,\,or\,\,\,\,\,\dfrac{\cos(A)}{\sin(A)}=\dfrac{3}{2}

\implies\cos(A)=0\,\,\,\,\,or\,\,\,\,\,\cot(A)=\dfrac{3}{2}

Since  \cos(A)=0, so,  \cot(A)=\dfrac{\cos(A)}{\sin(A)}=0

So,

\mapsto\tt{\blue{cot(A)=0\,\,\,\,\,or\,\,\,\,\,cot(A)=\dfrac{3}{2}}}

Similar questions