√1-cos2x/1+cos2x = tan x
Answers
Answer:
Hope u like my process
=====================
NOTE:-
------------
=> sin²x + cos²x = 1
=> cos²x - sin²x = cos2x
___________________
\begin{lgathered}= > y = \frac{ \sqrt{1 + \cos(2x) } }{ \sqrt{1 - \cos(2x) } } \\ \\ or. \: \: y = \sqrt{ \frac{( \sin ^{2} (x) + \cos ^{2} (x) ) + ( \cos ^{2} (x) - \sin ^{2} (x) ) }{ (\sin ^{2} (x) + \cos ^{2} (x) ) - ( \cos ^{2} (x) - \sin ^{2} ( x )) } } \\ \\ or . \: \: y = \sqrt{ \frac{2 \cos ^{2} (x) }{2 \sin ^{2} (x) } } = \frac{ \cos(x) }{ \sin(x) } = \cot(x) \\ \\\end{lgathered}=>y=1−cos(2x)1+cos(2x)or.y=(sin2(x)+cos2(x))−(cos2(x)−sin2(x))(sin2(x)+cos2(x))+(cos2(x)−sin2(x))or.y=2sin2(x)2cos2(x)=sin(x)cos(x)=cot(x)
Now..
Differentiating both sides we get
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
\frac{dy}{dx} = \frac{d( \cot(x) )}{dx} = - \csc ^{2} (x)dxdy=dxd(cot(x))=−csc2(x)