from natural numbers 1 to 288 , find the number for which the sum of numbers smallest than that numbers equal the sum of numbers greater than that number.
Answers
Answered by
0
Let the number be n.
So:
1+2+3................n-1 = n+1+n+2......................288
In the first AP,
Sn=n/2*[2a+(n-1)d]
no. of terms=n-1
a=1
d=1
Sn=(n-1)/2*[2+n-1-1]
=(n-1)/2*[n]................(1)
Second AP
a=n+1
d=1
no. of terms=288-n
Sn=n/2*[2a+(n-1)d]
Sn=(288-n)/2*[2+288-n-1]
=(288-n)/2*[n+289]..............(2)
(1)=(2)
So:
(n-1)/2*[n]=(288-n)/2*[n+289]
Multiplying both sides by 2.
==) n(n-1)=(288-n)(289+n)
==)n²-n=83232+288n-289n-n²
==)2n²-n=83232-n
==)2n²=83232
==)n²=83232/2
==)n²=41616
==)n=204
n cannot be negative so n is not -204
The term hence is 204
Hope it helps you.
Answered by
0
Hlo mate :-
Solution :-
_____________________________________________________________________________________________________________________________
● We seek n∈{1,…,288}n∈{1,…,288} for which
1+2+3+⋯+(n−1)=(n+1)+(n+2)+(n+3)+⋯+2881+2+3+⋯+(n−1)=(n+1)+(n+2)+(n+3)+⋯+288,
☆or for which
2(1+2+3+⋯+(n−1))+n=1+2+3+⋯+2882(1+2+3+⋯+(n−1))+n=1+2+3+⋯+288.
Thus,
n2=n(n−1)+n=12⋅288⋅289=122⋅172n2=n(n−1)+n=12⋅288⋅289=122⋅172,
implying n=12⋅17=204
_____________________________________________________________________________________________________________________________
☆ ☆ ☆ Hop It's helpful ☆ ☆ ☆
Solution :-
_____________________________________________________________________________________________________________________________
● We seek n∈{1,…,288}n∈{1,…,288} for which
1+2+3+⋯+(n−1)=(n+1)+(n+2)+(n+3)+⋯+2881+2+3+⋯+(n−1)=(n+1)+(n+2)+(n+3)+⋯+288,
☆or for which
2(1+2+3+⋯+(n−1))+n=1+2+3+⋯+2882(1+2+3+⋯+(n−1))+n=1+2+3+⋯+288.
Thus,
n2=n(n−1)+n=12⋅288⋅289=122⋅172n2=n(n−1)+n=12⋅288⋅289=122⋅172,
implying n=12⋅17=204
_____________________________________________________________________________________________________________________________
☆ ☆ ☆ Hop It's helpful ☆ ☆ ☆
Similar questions
Math,
7 months ago
Math,
7 months ago
English,
7 months ago
Social Sciences,
1 year ago
Physics,
1 year ago