1+cosA/sinA=sinA/1-cosA
Answers
Answered by
53
=1+cosA/sinA
=sinA+cosA/sinA(sin^2A+cos^2=1)=(sin^2=1-cos^2) =sinA=1-cosA
=sinA+cosA/1-cosA
=sinA/1-cosA=1-cosA/cosA
=sinA/1-cosA(1)
=sinA/1-cosA\\
hence proved
=sinA+cosA/sinA(sin^2A+cos^2=1)=(sin^2=1-cos^2) =sinA=1-cosA
=sinA+cosA/1-cosA
=sinA/1-cosA=1-cosA/cosA
=sinA/1-cosA(1)
=sinA/1-cosA\\
hence proved
Avishek:
how can sinA = 1 - cosA ??
Answered by
57
1+cos A
sin A
on multiply both numinator and denominator by sinA
(1+cosA) × sinA
sinA sin A
(1+cosA) sin A ⇒ (1+cosA)sinA as use sin²A+cos²A=1
Sin²A (1-cos²A)
(1+cosA) sinA as use a²-b²=(a+b)(a-b)
(1+cosA)(1-cosA)
sinA = RHS
(1-cosA)
Hence Proved
sin A
on multiply both numinator and denominator by sinA
(1+cosA) × sinA
sinA sin A
(1+cosA) sin A ⇒ (1+cosA)sinA as use sin²A+cos²A=1
Sin²A (1-cos²A)
(1+cosA) sinA as use a²-b²=(a+b)(a-b)
(1+cosA)(1-cosA)
sinA = RHS
(1-cosA)
Hence Proved
Similar questions