1+cosA/sinA + sinA/1+cosA =2/sinA....
Justify your answer.
Answers
Answered by
2
I hope it's help u................
Attachments:
![](https://hi-static.z-dn.net/files/dfd/5b4f14ea48817d641e44727e34d04fa5.jpg)
Answered by
2
Hello friend
___________________________
Here is your answer!!!
![\frac{1 + \cos \: a }{ \sin \: a } + \frac{ \sin \: a }{1 + \cos \: a } \\ \\=> \frac{(1 + \cos \: a) {}^{2} }{ (\sin \: a)} + \frac{ \sin {}^{2} a}{(1 + cos \: a)} \\ \\=> \frac{1 + 2cos \: a \: + cos {}^{2} \: a + sin {}^{2} a}{(sin \: a)(1 + cos \: a)} \\ \\=> \frac{2 + 2cos \: a}{(sin \: a)(1 + cos \: a} \\ \\ =>\frac{2(1 + cos \: a)}{sin \: a \: (1 + cos \: a)} \\ \\ =>\frac{2}{sin \: a} \frac{1 + \cos \: a }{ \sin \: a } + \frac{ \sin \: a }{1 + \cos \: a } \\ \\=> \frac{(1 + \cos \: a) {}^{2} }{ (\sin \: a)} + \frac{ \sin {}^{2} a}{(1 + cos \: a)} \\ \\=> \frac{1 + 2cos \: a \: + cos {}^{2} \: a + sin {}^{2} a}{(sin \: a)(1 + cos \: a)} \\ \\=> \frac{2 + 2cos \: a}{(sin \: a)(1 + cos \: a} \\ \\ =>\frac{2(1 + cos \: a)}{sin \: a \: (1 + cos \: a)} \\ \\ =>\frac{2}{sin \: a}](https://tex.z-dn.net/?f=+%5Cfrac%7B1+%2B+%5Ccos+%5C%3A+a+%7D%7B+%5Csin+%5C%3A+a+%7D+%2B+%5Cfrac%7B+%5Csin+%5C%3A+a+%7D%7B1+%2B+%5Ccos+%5C%3A+a+%7D+%5C%5C+%5C%5C%3D%26gt%3B+%5Cfrac%7B%281+%2B+%5Ccos+%5C%3A+a%29+%7B%7D%5E%7B2%7D+%7D%7B+%28%5Csin+%5C%3A+a%29%7D+%2B+%5Cfrac%7B+%5Csin+%7B%7D%5E%7B2%7D+a%7D%7B%281+%2B+cos+%5C%3A+a%29%7D+%5C%5C+%5C%5C%3D%26gt%3B+%5Cfrac%7B1+%2B+2cos+%5C%3A+a+%5C%3A+%2B+cos+%7B%7D%5E%7B2%7D+%5C%3A+a+%2B+sin+%7B%7D%5E%7B2%7D+a%7D%7B%28sin+%5C%3A+a%29%281+%2B+cos+%5C%3A+a%29%7D+%5C%5C+%5C%5C%3D%26gt%3B+%5Cfrac%7B2+%2B+2cos+%5C%3A+a%7D%7B%28sin+%5C%3A+a%29%281+%2B+cos+%5C%3A+a%7D+%5C%5C+%5C%5C+%3D%26gt%3B%5Cfrac%7B2%281+%2B+cos+%5C%3A+a%29%7D%7Bsin+%5C%3A+a+%5C%3A+%281+%2B+cos+%5C%3A+a%29%7D+%5C%5C+%5C%5C+%3D%26gt%3B%5Cfrac%7B2%7D%7Bsin+%5C%3A+a%7D+)
: L.H.S = R.H.S
We have proved.....
Thanks.
:)
___________________________
Here is your answer!!!
: L.H.S = R.H.S
We have proved.....
Thanks.
:)
Similar questions