Math, asked by jeevanpammi1409, 8 months ago

(1-cosA)÷sinA=sinA÷(1+cosA). Prove it.

Answers

Answered by monarkjain99
0

Step-by-step explanation:

hope it helped ....plz mark as brainliest

Attachments:
Answered by Anonymous
1

Question:-

 \rm \frac{1 -  \cos(A) }{ \sin(A) }  =  \frac{ \sin(A) }{1 +  \cos(A) }

Solution:-

 \rm \frac{1 -  \cos(A) }{ \sin(A) }  =  \frac{ \sin(A) }{1 +  \cos(A) }

Applying cross multiplication

 \rm(1  -  \cos(A) )(1 +  \cos(A) ) =  \sin(A)  \times  \sin(A)

Using this identity

 \rm \: (a - b)(a + b) = ( {a}^{2}  -  {b}^{2} )

We get

 \rm \:( 1 -  \cos {}^{2} (A) ) =  \sin {}^{2} (A)

Apply trigonometry identities

 \rm \:  \to \:  \sin {}^{2} (A)  +  \cos {}^{2} (A)  = 1

 \rm \: \to 1 -  \cos {}^{2} (A)  =  \sin {}^{2} (A)

 \rm \:  \to \: 1 -  \sin {}^{2} (A)  =  \cos {}^{2} (A)

We get

 \rm \:( 1 -  \cos {}^{2} (A) ) =  \sin {}^{2} (A)

 \rm \:  \sin { }^{2} (A)  =  \sin {}^{2} ( A)

Hence proved

Some trigonometry identity

 \rm \:  \to \:  \sin {}^{2} (A)  +  \cos {}^{2} (A)  = 1

 \rm \:  \to \: 1 +  \tan {}^{2} (A)  =  \sec {}^{2} (A)

 \rm \:  \to \: 1 +  \cot {}^{2} (A)  =  \csc {}^{2} (A)

 \rm \to \:  \tan(A)  =  \frac{ \sin(A) }{ \cos(A) }

 \rm \to \:  \cot(A)  =  \frac{ \cos(A) }{ \sin(A) }

 \rm \:  \to \:  \tan(A)  \times  \cot(A)  = 1

Similar questions