Math, asked by rudra3364, 1 year ago

1+cosec theta -cot theta /1+cosec theta +cot theta =?​

Answers

Answered by SreeVidhya07
0

Step-by-step explanation:

Given that,

 \frac{1 +   \: cosec  \: \alpha \:   -   \: \cot \:\alpha  }{1 + \:  cosec \:  \alpha \:   +   \: \cot \:  \alpha  }

Since ,

 { \cosec^{2} \alpha  } -  {cot}^{2}  \alpha  = 1

 =  \frac{( {cosec}^{2}  \alpha  -  {cot}^{2}  \alpha ) + (cosec  \: \alpha  -  \: cot \:  \alpha )}{1 + (cosec  \: \alpha   +   \: cot \:  \alpha )}

 =  \frac{( {cosec}  \alpha   +   {cot} \alpha ) (cosec \:  \alpha  - cot \:  \alpha ) + (cosec  \: \alpha  -  \: cot \:  \alpha )}{1+ (cosec  \: \alpha   +  \: cot \:  \alpha )}

 =  \frac{(cosec \:  \alpha  - cot \alpha )(cosec \:  \alpha  + \:  cot \:  \alpha  + 1)}{1 +  \: cosec \:  \alpha \:  +  \: cot \:  \alpha  }

 = cosec \:  \alpha  -  \: cot \:  \alpha

 =  \frac{1}{ \sin \alpha  }  -  \frac{ \cos\alpha  }{ \sin \alpha  }

 =  \frac{1 -  \cos \alpha  }{ \sin \alpha  }

Hope this helps you....

Plzzz mark me as Brainliest

Similar questions