1-cost heta÷1+cos theta= (cosec theta-cot theta)² prove that L.H.S=R.H.S
Answers
Answered by
2
Step-by-step explanation:
Given :-
(1- Cos θ)/(1+Cos θ)
To find :-
Prove that :
(1-Cos θ)/(1+Cos θ) = (Cosec θ- Cot θ)²
Solution :-
On taking LHS :
(1-Cos θ)/(1+Cos θ)
On multiplying both the numerator and the denominator with (1 - Cos θ) then
=>[(1-Cosθ)/(1+Cosθ)]×[(1-Cosθ)/(1-Cosθ)]
=>[(1- Cos θ)(1- Cos θ)]/[(1+ Cos θ)(1- Cos θ)]
=>[(1- Cos θ)²] / [(1+ Cos θ)(1- Cos θ)]
=> [(1- Cos θ)²] /[(1²- Cos² θ)]
Since (a+b)(a-b)=a²-b²
Where a = 1 and b = Cos θ
=> [(1- Cos θ)²] /( 1 - Cos² θ)
=> [(1- Cos θ)²] / Sin² θ
(Since Sin² θ + Cos² θ = 1
=> Sin² θ = 1-Cos² θ)
=> [(1- Cos θ)/ Sin θ]²
=> [ (1/Sin θ) - ( Cos θ/ Sin θ)]²
=> ( Cosec θ - Cot θ )²
=> RHS
=> LHS = RHS
Hence, Proved.
Answer:-
(1-Cos θ)/(1+Cos θ) = (Cosec θ- Cot θ)²
Used formulae:-
- (a+b)(a-b)=a²-b²
- Sin² θ + Cos² θ = 1
- Sin² θ = 1-Cos² θ
- Cosec θ = 1 / Sin θ
- Cot θ = Cos θ / Sin θ
Answered by
0
Similar questions