1+cosx÷1-cosx+1-cosx÷1+cosx=4cotxcosecx
Answers
Answered by
3
=(1+cosx)/(1-cosx)-(1-cosx)/1+cosx)
={(1+cosx)^2-(1-cosx)^2}/(1-cos^2x)
={1+cos^2x+2cosx-(1+cos^2x-2cosx)}/sin^2x
=(1+cos^2x+2cosx-1-cos^2x+2cosx)/sin^2x
=4cosx/sin^2x
=4cosx/sinx×sinx
=4×cosx/sinx×1/sinx
=4cotxcosecx
={(1+cosx)^2-(1-cosx)^2}/(1-cos^2x)
={1+cos^2x+2cosx-(1+cos^2x-2cosx)}/sin^2x
=(1+cos^2x+2cosx-1-cos^2x+2cosx)/sin^2x
=4cosx/sin^2x
=4cosx/sinx×sinx
=4×cosx/sinx×1/sinx
=4cotxcosecx
Answered by
0
Similar questions