Math, asked by BrainlyHelper, 1 year ago

(1- cosx)/(1+ cosx).dx
Integrate the function

Answers

Answered by rohitkumargupta
12
HELLO DEAR,


GIVEN function is integral of (1-cosx)/(1+cosx).dx


we know:- (1 - cosx) = 2 cos²(x/2),(1 + cosx) = 2sin²(x/2)

So, \int[2sin²(x/2)]/[2cos²(x/2].dx

=\inttan²(x/2).dx

=\int{sec²(x/2)-1}.dx

=\sf{\frac{tan(x/2)}{1/2}-x+c}

=\sf{2tan(x/2)-x+c}


I HOPE ITS HELP YOU DEAR,
THANKS

smartyprince: good answer
Answered by Shubhendu8898
0

 let  \ \ I = \int {\frac{1- \cos x}{1 + \cos x}} \, dx  \\ \\ I = \int {\frac{1- 1 + 2\sin^{2}\frac{x}{2}}{1 + 2\cos^{2}\frac{x}{2}-1}} \, dx     \\ \\  I = \int {\frac{2\sin^{2}\frac{x}{2}}{2\cos^{2}\frac{x}{2}} \\ \\  \\ \\    I = \int {tan^{2}\frac{x}{2}  \ dx \\ \\ I = \int {sec^{2}\frac{x}{2} -1 }  \ dx  \\ \\ I = \frac{1}2} \tan \frac{x}{2} - x +c

Similar questions