(1+cosx+sinx)/(1+cosx-sinx)=(1+sinx)/cosx
Answers
Answered by
0
Answer:
Step-by-step explanation:
LHS
(1+cosx+sinx)/(1+cosx-sinx)
=(1/cosx+cosx/cosx+sinx/cosx)/(1/cosx+cosx/cosx-sinx/cosx)
[Dividing both numerator and denominator with cosx]
=(1/cosx+1+sinx/cosx)/(1/cosx+1-sinx/cosx)
=(secx+1+tanx)/(secx+1-tanx)
={(secx+tanx)+1}/{secx+1-tanx}
={secx+tanx+(sec²x-tan²x)}/{secx+1-tanx} [sec²x-tan²x = 1]
={secx+tanx+(secx+tanx)(secx-tanx)}/{secx+1-tanx}
=[(secx+tanx){1+(secx-tanx)}]/[1+secx-tanx]
={(secx+tanx)(1+secx-tanx)}/(1+secx-tanx)
=secx+tanx
=(1/cosx)+(sinx/cosx)
=(1+sinx)/cosx = RHS [Proved]
Similar questions
Chemistry,
6 months ago
Science,
6 months ago
Environmental Sciences,
6 months ago
Math,
1 year ago
English,
1 year ago