(1+cosx/sinx)²= 1+cosx/1-sinx
Answers
Answered by
0
Answer:
(1+cosx/sinx)^=1+cosx/1-sinx
{(sinx+cosx)/sinx}^=
{(sin^x+cos^x+2sinx.cosx)/sin^x}
{(1+2sinx.cosx)/sin^x}=
{(1+2sinx.cosx)/1-cos^x}=
{(1+2sinx.cosx)/(1-cosx)(1+cosx)=RHS
{(1+2sinx.cosx)(1+cosx)=1-cos^x/1-sinx
{1+2sinx.cosx}=sin^x/1-sinx+cosx-sinx.cosx
{1+2sinx.cosx}=sin^x/1+2sinx.cosx
sin^x=sin^x
LHS=RHS
*Hence proved
Similar questions